Answer:
The driver hits the stationery dog because the applied force is less than required force
Explanation:
Kinetic energy will be given by
where m is the mass of the vehicle and v is the speed/velocity of the vehicle.
Substituting 800 Kg for m and 20 m/s for v we obtain

Frictional force by vehicle pads is given by
where d is the distance moved
Substituting 160000 for KE and 50 m for d we obtain

Therefore, the vehicle hits the dog since the required force is 3200N but the driver applied only 2000 N
Complete Question
The complete question is shown on the first uploaded image
Answer:
Explanation:
From he question we are told that
The first mass is 
The second mass is 
From the question we can see that at equilibrium the moment about the point where the string holding the bar (where
are hanged ) is attached is zero
Therefore we can say that

Making x the subject of the formula



Looking at the diagram we can see that the tension T on the string holding the bar where
are hanged is as a result of the masses (
)
Also at equilibrium the moment about the point where the string holding the bar (where (
) and
are hanged ) is attached is zero
So basically


Making
subject


An electron has a negative charge. Hope this helps.
F=nmv
where;
n=no. of bullets = 1
m=mass of bullets=2g *10^-3
V=velocity of bullets200m/sec
F=1
loss in Kinetic energy=gain in heat energy
1/2MV^2=MS∆t
let M council M
=1/2V^2=S∆t
M=2g
K.E=MV^2/2
=(2*10^-3)(200)^2/2
2 councils 2
2*10^-3*4*10/2
K.E=40Js
H=mv∆t
(40/4.2)
40Js=40/4.2=mc∆t
40/4.2=2*0.03*∆t
=158.73°C
The answer is weak.
The interaction of nature that will depend on the distance through the
way it acts and involved in beta decay is the weak interaction or the weak
force. This interaction is the responsible for radioactive decay which also
plays a significant role in nuclear fission.