Applicable linear expansion equation:
ΔL = αΔTL
In which
ΔL = change in length, α = Linear expansion coefficient of steel, ΔT = change in temperature, L = original length
Therefore,
ΔL = 12*10^-6*(18.5-(-3))*1410 = 0.36378 m
We know, Mechanical Energy = K.E. + P.E.
As ball is at ground, P.E. would be zero. But as it is in motion, it must have some K.E. and that is:
K.E. = 1/2 mv²
K.E. = 1/2 * 1 * 2²
K.E. = 4/2
K.E. = 2 J
In short, Your Answer would be Option B
Hope this helps!
It doesn't the sun stays still we move around the sun
Answer:
75 W
Explanation:
= temperature of the filament = 2100 K
= Emitting area of the filament = 1 cm² = 10⁻⁴ m²
= Emissivity = 0.68
= Stefan's constant = 5.67 x 10⁻⁸ Wm⁻²K⁻⁴
Using Stefan's law, Power output of the light bulb is given as

Answer:
v = 44,16 m/s
Explanation:
We will fixate our reference in the starting point from where Dan jumped of, at the top of the Casino. Therefore, the displacement made when dan reached the airbag would be of y= -99,4 m viewed from our reference. We describe the motion of dan with the equation:

Dan jumped from the rest, that means that the initial velocity v_0=0, therefore:

Since Dan is moving in the negative axis regarding our reference point, we take the negative root of the equation.
v_y=-√(2*(-9,81 m/s^2 )*(-99,4 m) )=44,1613 m/s 
So, if we don’t take the air resistance into account, Dan would have achieved an velocity of 44,16 m/s when he reached the airbag.
I hope everything was clear with my explanation. If you need anything else, let me know. Have a great day :D