Chemical reaction: Ba(NO₃)₂ + H₂SO₄ → BaSO₄ + 2HNO₃.
V(H₂SO₄) = 250 mL ÷ 1000 mL/L = 0,25 L.
m(BaSO₄) = 0,55 g.
n(BaSO₄) = m(BaSO₄) ÷ M(BaSO₄).
n(BaSO₄) = 0,55 g ÷ 233,38 g/mol.
n(BaSO₄) = 0,00235 mol.
From chemical reaction: n(BaSO₄) : n(Ba(NO₃)₂) = 1 : 1.
n(Ba(NO₃)₂) = 0,00235 mol.
c(Ba(NO₃)₂) = n(Ba(NO₃)₂) ÷ V.
c(Ba(NO₃)₂) = 0,00235 mol ÷ 0,25 L.
c(Ba(NO₃)₂) = 0,0095 mol/L.
<h2>
Hey There!</h2><h2>
_____________________________________</h2><h2>
Answer:</h2><h2>_____________________________________</h2>
(I) 
(II) 
(III) 
(IV) 
(V) 
<h2>
_____________________________________</h2><h2>
Best Regards,</h2><h2>
'Borz'</h2>
Answer:
Option d: C₈H₉NO₂ = acetaminophen, analgesic
Explanation:
% composition of compound is:
63.57 g of C
6 g of H
9.267 g of N
21.17 g of O
First of all we divide each by the molar mass of the element
63.57 g / 12 gmol = 5.29 mol of C
6 g of H / 1 g/mol = 6 mol H
9.267 g of N / 14 g/mol = 0.662 mol of N
21.17 g of O / 16 g/mol = 1.32 mol of O
We divide each by the lowest value, in this case 0.662
5.29 / 0.662 = 8
6 / 0.662 = 9
0.662 / 0.662 = 1
1.32 / 0.662 = 2
Molecular formula of the compound is C₈H₉NO₂
Answer:
A) pH of Buffer solution = 4.59
B) pH after 5.0 ml of 2.0 M NaOH have been added to 400 ml of the original buffer solution = 4.65
Explanation:
This is the Henderson-Hasselbalch Equation:
![pH = pKa + log\frac{[conjugate base]}{[acid]}](https://tex.z-dn.net/?f=pH%20%3D%20pKa%20%2B%20log%5Cfrac%7B%5Bconjugate%20base%5D%7D%7B%5Bacid%5D%7D)
to calculate the pH of the following Buffer solutions.
Answer:
Deposition
Explanation:
It’s breaking down the rock :]