The answer is 2400 centimeters
Answer:
Most familiar are surface waves on water, but both sound and light travel as wavelike disturbances, and the motion of all subatomic particles exhibits wavelike properties
Explanation:
Answer:
–77867 m/s/s.
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 34.5 m/s
Final velocity (v) = –23.9 m/s
Time (t) = 0.00075 s
Acceleration (a) =?
Acceleration is simply defined as the rate of change of velocity with time. Mathematically, it is expressed as:
Acceleration = (final velocity – Initial velocity) /time
a = (v – u) / t
With the above formula, we can obtain acceleration of the ball as follow:
Initial velocity (u) = 34.5 m/s
Final velocity (v) = –23.9 m/s
Time (t) = 0.00075 s
Acceleration (a) =?
a = (v – u) / t
a = (–23.9 – 34.5) / 0.00075
a = –58.4 / 0.00075
a = –77867 m/s/s
Thus, the acceleration of the ball is –77867 m/s/s.
To calculate the change in kinetic energy, you must know the force as a function of position. The work done by the force causes the kinetic energy change
Explanation:
The work-energy theorem states that the change in kinetic enegy of an object is equal to the work done on the object:

where the work done is the integral of the force over the position of the object:

As we see from the formula, the magnitude of the force F(x) can be dependent from the position of the object, therefore in order to solve correctly the integral and find the work done on the object, it is required to know the behaviour of the force as a function of the position, x.