It reaches 10 or 20 million degrees kelvin but it can get as high as 10 million degrees kelvin
The magnitude of the force that the beam exerts on the hi.nge will be,261.12N.
To find the answer, we need to know about the tension.
<h3>How to find the magnitude of the force that the beam exerts on the hi.nge?</h3>
- Let's draw the free body diagram of the system using the given data.
- From the diagram, we have to find the magnitude of the force that the beam exerts on the hi.nge.
- For that, it is given that the horizontal component of force is equal to the 86.62N, which is same as that of the horizontal component of normal reaction that exerts by the beam on the hi.nge.
- We have to find the vertical component of normal reaction that exerts by the beam on the hi.nge. For this, we have to equate the total force in the vertical direction.
- To find Ny, we need to find the tension T.
- For this, we can equate the net horizontal force.
- Thus, the vertical component of normal reaction that exerts by the beam on the hi.nge become,
- Thus, the magnitude of the force that the beam exerts on the hi.nge will be,
Thus, we can conclude that, the magnitude of the force that the beam exerts on the hi.nge is 261.12N.
Learn more about the tension here:
brainly.com/question/28106871
#SPJ1
No they say "Watch out it's the fuzz"
<span>A light-year measures the distance that light travels in 1 year.
Answer : B ) Distance
-Hope this helps.</span>