Newtons first law of motion or friction
The answer to your question is A
Answer:
The options are not shown, so let's derive the relationship.
For an object that is at a height H above the ground, and is not moving, the potential energy will be:
U = m*g*H
where m is the mass of the object, and g is the gravitational acceleration.
Now, the kinetic energy of an object can be written as:
K = (1/2)*m*v^2
where v is the velocity.
Now, when we drop the object, the potential energy begins to transform into kinetic energy, and by the conservation of the energy, by the moment that H is equal to zero (So the potential energy is zero) all the initial potential energy must now be converted into kinetic energy.
Uinitial = Kfinal.
m*g*H = (1/2)*m*v^2
v^2 = 2*g*H
v = √(2*g*H)
So we expressed the final velocity (the velocity at which the object impacts the ground) in terms of the height, H.
The centripetal force acting on the ball will be 23.26 N.The direction of the centripetal force is always in the path of the center of the course.
<h3>What is centripetal force?</h3>
The force needed to move a body in a curved way is understood as centripetal force. This is a force that can be sensed from both the fixed frame and the spinning body's frame of concern.
The given data in the problem is;
m is the mass of A ball = 0.25 kg
r is the radius of circle= 1.6 m rope
v is the tangential speed = 12.2 m/s
is the centripetal force acting on the ball
The centripetal force is found as;

Hence the centripetal force acting on the ball will be 23.26 N.
To learn more about the centripetal force refer to the link;
brainly.com/question/10596517
Using the Equation:
v² = vi² + 2 · a · s → Eq.1
where,
v = final velocity
vi = initial velocity
a = acceleration
s = distance
<span><span>We know that vi = 0 because the ball was at rest initially.
</span><span>
Therefore,
Solving Eq.1 for acceleration,
</span></span> v² = vi² + 2 · a · s
v² = 0 + 2 · a · s
v² = 2 · a · s
Rearranging for a,
a = v ²/2·<span>s
Substituting the values,
a = 46</span>²/2×1<span>
a = 1058 m/s</span>²
<span>Now applying Newton's 2nd law of motion,
</span>
<span>F = ma
= 0.145</span>×<span>1058
F = 153.4 N</span>