1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
emmainna [20.7K]
1 year ago
11

Even when the head is held erect, as in the figure below, its center of mass is not directly over the principal point of support

(the atlanto-occipital joint). The muscles in the back of the neck musttherefore exert a force to keep it erect. That is why your head falls forward when you fall asleep in class. If the perpendicular distance between the line of action for the weight of the head and thepivot point is rw = 2.4 cm and the perpendicular distance between the line of action for theforce the muscles exert on the head and the pivot point is rMi=5.1 cm. determine each or thefollowina. (Assume the weight of the head is 50 N.)

Physics
1 answer:
alexandr1967 [171]1 year ago
8 0

We are asked to determine the force required by the neck muscle in order to keep the head in equilibrium. To do that we will add the torques produced by the muscle force and the weight of the head. We will use torque in the clockwise direction to be negative, therefore, we have:

\Sigma T=r_{M\perp}(F_M)-r_{W\perp}(W)

Since we want to determine the forces when the system is at equilibrium this means that the total sum of torque is zero:

r_{M\perp}(F_M)-r_{W\perp}(W)=0

Now, we solve for the force of the muscle. First, we add the torque of the weight to both sides:

r_{M\perp}(F_M)=r_{W\perp}(W)

Now, we divide by the distance of the muscle:

(F_M)=\frac{r_{W\perp}(W)}{r_{M\perp}}

Now, we substitute the values:

F_M=\frac{(2.4cm)(50N)}{5.1cm}

Now, we solve the operations:

F_M=23.53N

Therefore, the force exerted by the muscles is 23.53 Newtons.

Part B. To determine the force on the pivot we will add the forces we add the vertical forces:

\Sigma F_v=F_j-F_M-W

Since there is no vertical movement the sum of vertical forces is zero:

F_j-F_M-W=0

Now, we add the force of the muscle and the weight to both sides to solve for the force on the pivot:

F_j=F_M+W

Now, we plug in the values:

F_j=23.53N+50N

Solving the operations:

F_j=73.53N

Therefore, the force is 73.53 Newtons.

You might be interested in
An electron moving in a direction perpendicular to a uniform magnetic field at a speed of 1.6 107 m/s undergoes an acceleration
umka2103 [35]

Answer:

B = 0.024T positive z-direction

Explanation:

In this case you consider that the direction of the motion of the electron, and the direction of the magnetic field are perpendicular.

The magnitude of the magnetic force exerted on the electron is given by the following formula:

F=qvB     (1)

q: charge of the electron = 1.6*10^-19 C

v: speed of the electron = 1.6*10^7 m/s

B: magnitude of the magnetic field = ?

By the Newton second law you also have that the magnetic force is equal to:

F=qvB=ma       (2)

m: mass of the electron = 9.1*10^-31 kg

a: acceleration of the electron = 7.0*10^16 m/s^2

You solve for B from the equation (2):

B=\frac{ma}{qv}\\\\B=\frac{(9.1*10^{-31}kg)(7.0*10^{16}m/s^2)}{(1.6*10^{-19}C)(1.6*10^7m/s)}\\\\B=0.024T

The direction of the magnetic field is found by using the right hand rule.

The electron moves upward (+^j). To obtain a magnetic forces points to the positive x-direction (+^i), the direction of the magnetic field has to be to the positive z-direction (^k). In fact, you have:

-^j X ^i = ^k

Where the minus sign of the ^j is because of the negative charge of the electron.

Then, the magnitude of the magnetic field is 0.024T and its direction is in the positive z-direction

8 0
3 years ago
An object is thrown with velocity v from the edge of a cliff above level ground. Neglect air resistance. In order for the object
musickatia [10]

Answer:

(C) greater than zero but less than 45° above the horizontal

Explanation:

The range of a projectile is given by R = v²sin2θ/g.

For maximum range, sin2θ = 1 ⇒ 2θ = sin⁻¹(1) = 90°

2θ = 90°

θ = 90°/2 = 45°

So the maximum horizontal distance R is in the range 0 < θ < 45°, if θ is the angle above the horizontal.

4 0
3 years ago
Read 2 more answers
Use the circuit to answer the following questions.
Zanzabum

Answer:

1)ammeter

2)ised to check measure of current flow through a circuit

3)o.90 ambere

7 0
3 years ago
Can someone pls help me?!!!! i need it asap!! i’m very stressed
Mariulka [41]

Answer:

Acceleration

Explanation:

Its speed or velocity change

6 0
3 years ago
Suppose that a white dwarf is gaining mass through accretion in a binary system. what happens if the mass someday reaches the 1.
Soloha48 [4]
It would blow up turning into a supernova.
7 0
3 years ago
Read 2 more answers
Other questions:
  • (HELP!!! 30 pts if answered right. )What formula gives the strength of an electric field, E, at a distance from a known source c
    11·1 answer
  • An increase in temperature the kinetic energy and average speed of the gas particles. As a result, the pressure on the walls of
    8·1 answer
  • Why is object 2 accelerating while object 1 remains stationary?
    10·1 answer
  • As the time required to run up the stairs increases, the power developed by that person
    14·1 answer
  • GIVING BRAINLIEST FIVE STARS AND HEART!
    8·1 answer
  • How could you calculate the elasticity of a collision if you know the approach velocity and separation velocity of the colliding
    7·1 answer
  • Energy flows from the sun to _______ to consumers and eventually to _______
    12·1 answer
  • Please help me and I’ll mark as brainliest i promise
    12·1 answer
  • An object with a mass of 10 kg is
    11·1 answer
  • Mass m moves to the right with speed =v along a frictionless horizontal surface and crashes into an equal mass m initially at re
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!