1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
emmainna [20.7K]
10 months ago
11

Even when the head is held erect, as in the figure below, its center of mass is not directly over the principal point of support

(the atlanto-occipital joint). The muscles in the back of the neck musttherefore exert a force to keep it erect. That is why your head falls forward when you fall asleep in class. If the perpendicular distance between the line of action for the weight of the head and thepivot point is rw = 2.4 cm and the perpendicular distance between the line of action for theforce the muscles exert on the head and the pivot point is rMi=5.1 cm. determine each or thefollowina. (Assume the weight of the head is 50 N.)

Physics
1 answer:
alexandr1967 [171]10 months ago
8 0

We are asked to determine the force required by the neck muscle in order to keep the head in equilibrium. To do that we will add the torques produced by the muscle force and the weight of the head. We will use torque in the clockwise direction to be negative, therefore, we have:

\Sigma T=r_{M\perp}(F_M)-r_{W\perp}(W)

Since we want to determine the forces when the system is at equilibrium this means that the total sum of torque is zero:

r_{M\perp}(F_M)-r_{W\perp}(W)=0

Now, we solve for the force of the muscle. First, we add the torque of the weight to both sides:

r_{M\perp}(F_M)=r_{W\perp}(W)

Now, we divide by the distance of the muscle:

(F_M)=\frac{r_{W\perp}(W)}{r_{M\perp}}

Now, we substitute the values:

F_M=\frac{(2.4cm)(50N)}{5.1cm}

Now, we solve the operations:

F_M=23.53N

Therefore, the force exerted by the muscles is 23.53 Newtons.

Part B. To determine the force on the pivot we will add the forces we add the vertical forces:

\Sigma F_v=F_j-F_M-W

Since there is no vertical movement the sum of vertical forces is zero:

F_j-F_M-W=0

Now, we add the force of the muscle and the weight to both sides to solve for the force on the pivot:

F_j=F_M+W

Now, we plug in the values:

F_j=23.53N+50N

Solving the operations:

F_j=73.53N

Therefore, the force is 73.53 Newtons.

You might be interested in
A series circuit consists of a 100-ω resistor, a 10.0-μf capacitor, and a 0.350-h inductor. the circuit is connected to a 120-v
Tpy6a [65]
Current will be I=\dfrac{V_{rms}}{Z}=\dfrac{V_{rms}}{\sqrt{ R^{2}+(X_{C}-X_{L})^{2}}}\\where~X_{c}=\dfrac{1}{j.\omega .C}~and~X_{L}=j.\omega.L~where~\omega=2.\pi f~and~f=60Hz
now just pluf in the values and Voila..
7 0
3 years ago
Question 8 of 10
-BARSIC- [3]

Answer:

The correct answer is the Convex lens. An image is formed when a ray of light coming from a point intersects at another point. The image is formed by the real intersection of light. The image is formed by the virtual intersection of Light.

here is the site : textbook.com

3 0
2 years ago
A 325 N force applied to an object for 5.5 s. What’s the impulse?
vazorg [7]
According to Newton second law of motion, the resultant force is directly proportional to the rate of change in momentum while maintaining other factors constant. Therefore, F = (mv-mu)/t where F is the resultant force , m is the mass of the object, v is the final velocity and u is the initial velocity.
Hence, Ft = mv-mu, but impulse is given by force multiplied by time, thus, impulse is equivalent to the change in momentum.
Impulse = Ft
              = 325 × 2.2 sec
              = 715 Ns
4 0
3 years ago
How much force is required to accelerate a 9.0-g object at 10000 g's?
Yuki888 [10]
Hey give us m = 9.0 g = 9.0 x 10-3 kg, and a = 10,000 "g's" = 98000 m/s/s so:F = ma = (9.0 x 10-3 kg)(98000 m/s/s) = 882 N = 880 N
6 0
3 years ago
A bus starts from rest.if the acceleration is 2m/s square, find
MrMuchimi

Answer:

The velocity after 2 seconds can be found through:

V = u +a*t

Where V is final velocity, u is initial velocity, a is acceleration and t is time.

V = 0 + 2* 2= 4 meters/second

The distance (s) can be found through:

V^2= u^2 +2*a* s

Where V is final velocity, u is initial velocity, a is acceleration.

4^2= 0^2 + 2 *2*s

16= 0 + 4s

s= 4 meters

Distance (s) can also be found through:

s= ut + 1/2 at^2

s= 0+ 1/2 *2*2^2= 1 *2*2

s= 4 meters

Explanation:

3 0
1 year ago
Other questions:
  • What would happen if the distance between the earth and the moon decreased
    9·2 answers
  • wnat happens to the sound intensity level (expressed in dB) if we doubled the intensity of the voice of a specific sound?​
    15·1 answer
  • Rowan is walking in a shallow, clear bay, in still water just over her knees. When she looks down at her feet in the sand, she n
    10·1 answer
  • You are driving at 25 m/s with your cruise control on when you see a fallen tree in the road. It takes you 0.30 s to put on the
    15·1 answer
  • The gravitational pull between Pluto and the sun would be increased if
    9·1 answer
  • In order for work to take place (2 points)
    7·1 answer
  • Weight is the amount of matter in an object.<br> True or False
    12·2 answers
  • Every few years, Earth passes through Saturn’s rings.
    10·1 answer
  • atmospheric pressure is measured in all of the following units except ……… ? A. torr B. pascal C. bar D. newton?
    9·1 answer
  • The mass of a coin is measured to be 12.5±0.1 g. The diameter is 2.8±0.1 cm and the thickness 2.1 ±0.1 mm. Calculate the average
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!