The answer is flourine
flourine some what sounds like flow so
flourine is a flowing element
Answer:
In my opinion, I think its 2
Explanation:
Answer:
Option B. 2096.1 K
Explanation:
Data obtained from the question include the following:
Enthalpy (H) = +1287 kJmol¯¹ = +1287000 Jmol¯¹
Entropy (S) = +614 JK¯¹mol¯¹
Temperature (T) =.?
Entropy is related to enthalphy and temperature by the following equation:
Change in entropy (ΔS) = change in enthalphy (ΔH) / Temperature (T)
ΔS = ΔH / T
With the above formula, we can obtain the temperature at which the reaction will be feasible as follow:
ΔS = ΔH / T
614 = 1287000/ T
Cross multiply
614 x T = 1287000
Divide both side by 614
T = 1287000/614
T = 2096.1 K
Therefore, the temperature at which the reaction will be feasible is 2096.1 K
M=D*V,
V=m/D
m=15 g
D=3 g/ml
V=15 g/3 g/ml=5 ml
Answer : The final temperature of the solution in the calorimeter is, 
Explanation :
First we have to calculate the heat produced.

where,
= enthalpy change = -44.5 kJ/mol
q = heat released = ?
m = mass of
= 1.52 g
Molar mass of
= 40 g/mol

Now put all the given values in the above formula, we get:


Now we have to calculate the final temperature of solution in the calorimeter.

where,
q = heat produced = 1.691 kJ = 1691 J
m = mass of solution = 1.52 + 35.5 = 37.02 g
c = specific heat capacity of water = 
= initial temperature = 
= final temperature = ?
Now put all the given values in the above formula, we get:


Thus, the final temperature of the solution in the calorimeter is, 