Answer:
<h3>The answer is 20 g/cm³</h3>
Explanation:
The density of a substance can be found by using the formula
![density = \frac{mass}{volume} \\](https://tex.z-dn.net/?f=density%20%3D%20%20%5Cfrac%7Bmass%7D%7Bvolume%7D%20%5C%5C)
From the question
mass = 16,000 g
volume = 800 cm³
We have
![density = \frac{16000}{800} = \frac{160}{8} \\](https://tex.z-dn.net/?f=density%20%3D%20%20%5Cfrac%7B16000%7D%7B800%7D%20%20%3D%20%20%5Cfrac%7B160%7D%7B8%7D%20%20%5C%5C%20)
We have the final answer as
<h3>20 g/cm³</h3>
Hope this helps you
Answer:
C.) Alpha, beta, and gamma particles
Explanation:
A dense shield of aluminium can protect Cole from all the listed types of radiation produced from the radioactive particles.
A radioactive protector has very unique and specie ability to contain and prevent the movement of radiations of any types from going into the body.
The strongest and most penetrating radiations are the gamma rays. Any material that can prevent the movement of these rays can halt alpha and beta particles too.
An aluminium shield is made up of multiple layers of aluminium stacked together and it provides enough resistance.
Explanation:
Given that,
Mass number, A = 302
Atomic number, Z = 119
We know that, atomic number = no of protons
Protons = 119
Mass no. = No. of neutrons + No. of protons
302 = No. of neutrons + 119
No. of neutrons = 302 - 119
= 183
No. of electrons = No. of protons
= 119
Answer:
Bin 1 points to a carbon bonded to a double bonded carbon and single bonded to two hydrogens. --- trigonal planar, tetrahedral
Bin 2 points to a carbon double bonded to a carbon and single bonded to a carbon and one hydrogen.------- trigonal planar, tetrahedral
Bin 3 is a carbon single bonded to two carbons and single bonded to two hydrogens. ----- tetrahedral, tetrahedral
Bin 4 is the same as bin 3.--------tetrahedral, tetrahedral
Bin 5 is a carbon triple bonded to a carbon and single bonded to a carbon.---- linear, tetrahedral
Bin 6 is triple bonded to a carbon and single bonded to a hydrogen.---linear, tetrahedral
Explanation:
A single C-C or C-H bond is in a tetrahedral geometry, the carbon atom is bonded to four species with a bond angle of 109°.
A C=C bond is trigonal planar with a bond angle of 120°.
Lastly, a C≡C bond has a linear geometry with a bond angle of 180° between the atoms of the bond.