Heating a substance causes molecules to speed up and spread slightly further apart, occupying a larger volume that results in a decrease in density. Cooling a substance causes molecules to slow down and get slightly closer together, occupying a smaller volume that results in an increase in density.
From: www.middleschoolchemistry.com
Answer:
5 mph
Explanation:
100 miles, 20 hours (divide by 2)
50 miles, 10 hours (divide by 2)
25 miles, 5 hours (divide by 2)
divide both sides by 5
5 miles, 1 hour
Answer:
50
Explanation:
We will need a balanced equation with masses, moles, and molar masses of the compounds involved.
1. Gather all the information in one place with molar masses above the formulas and masses below them.
Mᵣ: 30.01 32.00 46.01
2NO + O₂ ⟶ 2NO₂
Mass/g: 80.00 16.00
2. Calculate the moles of each reactant

3. Calculate the moles of NO₂ we can obtain from each reactant
From NO:
The molar ratio is 2 mol NO₂:2 mol NO

From O₂:
The molar ratio is 2 mol NO₂:1 mol O₂

4. Identify the limiting and excess reactants
The limiting reactant is O₂ because it gives the smaller amount of NO₂.
The excess reactant is NO.
5. Mass of excess reactant
(a) Moles of NO reacted
The molar ratio is 2 mol NO:1 mol O₂

(b) Mass of NO reacted

(c) Mass of NO remaining
Mass remaining = original mass – mass reacted = (80.00 - 30.01) g = 50 g NO
Answer:
cinnamic acid - 150 mg
cis-stilbene - 100 μL
trans- stilbene - 100 mg
pyridinium tribromide - 200-385 mg
For this data:
moles of cinnamic acid = 0.150 g/148.16 g/mol = 0.001 mols
Theoretical mass of dibromoproduct formed = 0.001 mol x 307.97 g/mol = 0.312 g
cis-stilbene (100 ul = 0.1 ml)
moles of cis-stilbene = 0.1 ml x 1.01 g/mol/180.25 g/mol = 0.00056 mols
Theoretical mass of dibromoproduct formed = 0.00056 mol x 340.05 g/mol = 0.19 g
trans-stilbene
moles of tran-stilbene = 0.1 g/180.25 g/mol = 0.00055 mols
Theoretical mass of dibromoproduct formed = 0.00055 mol x 340.05 g/mol = 0.19 g
Explanation: