Explanation:
The work is to calculate the molar mass of the solute (adrenaline) from the elevation of the boling point and compare with the mass of the structural formula. If they both are reasonably equal then you conclude that the results are in agreement, else they are not in agreement.
Since, you did not include the structural formula, I can explain the whole procedure to calculate the molar mass from the boiling point elevation, and then you can compare with the mass of the structural formula that only you know.
Determination of the molar mass from the boiling point elevation.
1) With the elevation of the boiling point, which is a colligative property, you can find the molality of the solution, using the formula:
ΔTb = i * Kb * m
Where:
> ΔTb is the increase of the boiling point of ths solvent, i.e. CCl4.
> i van't Hoff constant = 1 (because the solute is non ionic)
> m is the molality of the solution
2) Clearing m you get:
m = ΔTb / Kb
Kb is a datum that you must find in a table of internet (since the statement does not include it).
I found Kb = 5.02 °C/m
Then, m = 0.49°C / (5.02°C/m) = 0.09760956 m
3) With m and the mass of solvent you find the number of moles of solute using the formula:
m = number of moles of solute / kg of solvent
You have the mass of the solvent = 36.0 g = 0.0360 kg, so you can solve for the number of moles of solute:
=> number of moles of solute = m * kg of solvent = 0.09760956 m * 0.036kg = 0.0035139 moles
4) With the nuimber of moles and the mass you find the molar mass:
molar mass = mass in grams / number of moles = 0.64 g / 0.0035139 moles = 182 g/mol <------------- this is the important result
5) Now that you have the molar mass you can compare with the mass of the molecular formula. If they are reasonably equal then you conclude that the <span>molar mass of adrenaline calculated from the boiling point elevation is in agreement with the structural formula</span>
The answer is 60.3% magnesium, 39.7% oxygen.
Solution:
The chemical equation for the reaction is 2 Mg + O2 → 2 MgO.
Since magnesium reacts completely with oxygen, it is the limiting reactant in the reaction. Hence, we can use the number of moles of magnesium to get the mass of MgO produced:
moles of magnesium = 14.7g / 24.305g mol-1
= 0.6048 mol
mass of MgO = 0.6048mol Mg(2 mol MgO/2mol Mg)(40.3044g MgO/1 mol MgO)
= 24.376g MgO
We can now solve for the percentage of magnesium:
% Mg = (14.7g Mg / 24.376g MgO)*100% = 60.3%
We also use the number of moles of magnesium to get the mass of oxygen consumed in the reaction:
mass of O2 = 0.6048 mol Mg (1mol O2 / 2mol Mg) (31.998g / 1mol O2)
= 9.676g
The percentage of oxygen is therefore
% O2 = (9.676g O2 / 24.376g MgO)*100%
= 39.7%
Notice that we can just subtract the magnesium's percentage from 100% to get
% O2 = 100% - 60.3% = 39.7%
The core is the layer of the sun from which energy escapes into space.