For this case we must simplify the following expression

We know that, by definition:

So, rewriting the expression we have:

We add similar terms taking into account that:
- Equal signs are added and the same sign is placed.
- Different signs are subtracted and the major's sign is placed:

Answer:

Answer:

Step-by-step explanation:
d = 
d = 
d = 
Answer:
1 / 2
Step-by-step explanation:
- First observe that the fate of the last person is determined the moment either the first or the last seat is selected! This is because the last person will either get the first seat or the last seat. Any other seat will necessarily be taken by the time the last guy gets to 'choose'.
- Since at each choice step, the first or last is equally probable to be taken, the last person will get either the first or last with equal probability: 1/2
- Armed with the key observation, we see that the event that the last person's correct seat is free, is exactly the same as the event that the first person's seat was taken before the last person's seat.
- Well, each person had to make a random choice, was equally likely to choose the first person's seat or the last person's seat - the random chooser exhibits absolutely no preference towards a particular seat. This means that the probability that one seat is taken before the other must be 1/2
Answer:
x = -5/31
Step-by-step explanation:
5(5x + 1) = 3x - 9x multiply 5 with the inside of the parenthesis, 5(5x + 1) = 25x + 5
25x + 5 = 3x - 9x add the like terms, 31x = -5 and x = -5/31
Answer:
25x + 55
Step-by-step explanation:
10(x + 4) + 15(x + 1)
Distribute
10x + 40 + 15x +15
Combine like terms
25x + 55