The enthalpy of reaction for the combustion of ethane 2CH₃CH₃ + 7O₂ → 4CO₂ + 6H₂O calculated from the average bond energies of the compounds is -2860 kJ/mol.
The reaction is:
2CH₃CH₃ + 7O₂ → 4CO₂ + 6H₂O (1)
The enthalpy of reaction (1) is given by:
(2)
Where:
r: is for reactants
p: is for products
The bonds of the compounds of reaction (1) are:
- 2CH₃CH₃: 2 moles of 6 C-H bonds + 2 moles of 1 C-C bond
- 7O₂: 7 moles of 1 O=O bond
- 4CO₂: 4 moles of 2 C=O bonds
- 6H₂O: 6 moles of 2 H-O bonds
Hence, the enthalpy of reaction (1) is (eq 2):

Therefore, the enthalpy of reaction for the combustion of ethane is -2860 kJ/mol.
Read more here:
brainly.com/question/11753370?referrer=searchResults
I hope it helps you!
Answer:
239.45 K
Explanation:
Ideal gas law formula is P1V1T2=P2V2T1
Rearrange that to get...
T2=T1P2V2/P1V1
Fill in the values and solve.
Let's write the equation

According to law of conservation of mass .
- Mass of products=Mass of reactants
Let required value be x




holacomo es tu pregunta nola entiendo
lanation:
Explanation:
1 mol = 22.4 l
5.42 mol = 22.4 × 5.42 = 121.408
in two decimal place it is 121.41