Answer:
37.14 %
Explanation:
Using the equation, mass, M = D1 * V1
= D2 * V2
Where,
D1 = density of the liquid Nitrogen
D2 = density of gaseous Nitrogen
V1 = volume of the liquid Nitrogen
V2 = volume of the gaseous Nitrogen
Calculating V2,
0.808 * 185 = 1.15 * V2
Volume of Nitrogen after expansion = 129.98 m3.
Volume = L * b * h
= 10 * 10 * 3.5
Volume of the room = 350 m3.
Fraction of air = volume of Nitrogen after expansion/volume of the room * 100
= 129.98/350 *100
= 37.14 %
In humans, height, skin color, hair color, and eye color are examples of polygenic traits.
A polygene is a member of a collection of non-epistatic genes that interact additively to steer a phenotypic trait, consequently contributing to more than one-gene inheritance, a sort of non-Mendelian inheritance, in preference to unmarried-gene inheritance, which is the core belief of Mendelian inheritance.
A polygenic trait is a feature, which includes height or skin coloration, that is encouraged by way of or extra genes. because a couple of genes are concerned, polygenic developments do not comply with the styles of Mendelian inheritance. Many polygenic traits are also stimulated by means of the environment and are called multifactorial.
Most inherited trends in animals are polygenic. a few examples are: conformation, kind, size, sturdiness, disorder resistance, temperament, velocity, milk and egg production, growth fee, maturation and sexual adulthood rate, and numerous inherited diseases.
Learn more about polygenic traits here:-brainly.com/question/27493732
#SPJ4
<span>C2H5
First, you need to figure out the relative ratios of moles of carbon and hydrogen. You do this by first looking up the atomic weight of carbon, hydrogen, and oxygen. Then you use those atomic weights to calculate the molar masses of H2O and CO2.
Carbon = 12.0107
Hydrogen = 1.00794
Oxygen = 15.999
Molar mass of H2O = 2 * 1.00794 + 15.999 = 18.01488
Molar mass of CO2 = 12.0107 + 2 * 15.999 = 44.0087
Now using the calculated molar masses, determine how many moles of each product was generated. You do this by dividing the given mass by the molar mass.
moles H2O = 11.5 g / 18.01488 g/mole = 0.638361 moles
moles CO2 = 22.4 g / 44.0087 g/mole = 0.50899 moles
The number of moles of carbon is the same as the number of moles of CO2 since there's just 1 carbon atom per CO2 molecule.
Since there's 2 hydrogen atoms per molecule of H2O, you need to multiply the number of moles of H2O by 2 to get the number of moles of hydrogen.
moles C = 0.50899
moles H = 0.638361 * 2 = 1.276722
We can double check our math by multiplying the calculated number of moles of carbon and hydrogen by their respective atomic weights and see if we get the original mass of the hydrocarbon.
total mass = 0.50899 * 12.0107 + 1.276722 * 1.00794 = 7.400185
7.400185 is more than close enough to 7.40 given rounding errors, so the double check worked.
Now to find the empirical formula we need to find a ratio of small integers that comes close to the ratio of moles of carbon and hydrogen.
0.50899 / 1.276722 = 0.398669
0.398669 is extremely close to 4/10, so let's reduce that ratio by dividing both top and bottom by 2 giving 2/5.
Since the number of moles of carbon was on top, that ratio implies that the empirical formula for this unknown hydrocarbon is
C2H5</span>
2Al +3CuSO4=Al2 (SO4)3+3Cu.
is the balanced equation.
HOPE IT HELPS YOU '_'
Answer:
as the greatest heat capacity? a. 1,000 g of water b. 1,000 g of steel c. 1 g of water d. 1 g ... +1. kvargli6h and 1 other learned from this answer. Answer: a. 1,000 g of water ... Heat capacity of steel = 0.49 J/gram^0C. Hence 1,000 g of water will have greatest heat capacity.
Explanation: