1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sonja [21]
3 years ago
15

A projectile is shot directly away from Earth's surface. Neglect the rotation of the Earth. What multiple of Earth's radius RE g

ives the radial distance (from the Earth's center) the projectile reaches if (a) its initial speed is 0.241 of the escape speed from Earth and (b) its initial kinetic energy is 0.241 of the kinetic energy required to escape Earth. (c) What is the least initial mechanical energy required at launch if the projectile is to escape Earth?
Physics
2 answers:
Elden [556K]3 years ago
8 0

Answer:

a. 1.06R b. 1.32R c. GMm/R

Explanation:

a. Considering the conservation of mechanical energy,

K₁ + U₁ = K₂ + U₂     (1)where K₁ and K₂ = initial and final kinetic energies of projectile, and U₁ and U₂ = initial and final potential energies of projectile

K₁ = 1/2mv²,   K₂ = 0,  U₁ = -GMm/R   where R = radius of earth , U₂ = '-GMm/r where r = radius at maximum height.

So, inputting the variables into (1), we have

1/2mv² - GMm/R = 0 - GMm/r

1/2mv² = -GMm/r + GMm/R  (2)

Now v = 0.241v₁    where v₁ =√(2GM/R) escape velocity

Substituting v into (2) above, we have

1/2m[0.241√(2GM/R)]² = -GMm/r + GMm/R

0.058GMm/R = -GMm/r + GMm/R

GMm/r = GMm/R -'0.058GMm/R

GMm/r = 0.942GMm/R

r = R/0.942

r = 1.06R

b. When K₁ = 0.241K wh6ere K = escape kinetic energy = GMm/R. So

K₁ + U₁ = K₂ + U₂

0.241GMm/R -'GMm/R = 0 -' GMm/r

-'0.759GMm/R = '-GMm/r

r = R/0.759 = 1.32R

c. If it is to escape earth, its initial velocity must equal the escape velocity.

So its least initial mechanical energy is its escape kinetic energy

1/2m[√(2GM/R)]² = GMm/R

7nadin3 [17]3 years ago
3 0

Answer:

(a) r = 1.062·R_E = \frac{531}{500} R_E

(b) r = \frac{33}{25} R_E

(c) Zero

Explanation:

Here we have escape velocity v_e given by

v_e =\sqrt{\frac{2GM}{R_E} } and the maximum height given by

\frac{1}{2} v^2-\frac{GM}{R_E} = -\frac{GM}{r}

Therefore, when the initial speed is 0.241v_e we have

v = 0.241\times \sqrt{\frac{2GM}{R_E} } so that;

v² = 0.058081\times {\frac{2GM}{R_E} }

v² = {\frac{0.116162\times GM}{R_E} }

\frac{1}{2} v^2-\frac{GM}{R_E} = -\frac{GM}{r} is then

\frac{1}{2} {\frac{0.116162\times GM}{R_E} }-\frac{GM}{R_E} = -\frac{GM}{r}

Which gives

-\frac{0.941919}{R_E} = -\frac{1}{r} or

r = 1.062·R_E

(b) Here we have

K_i = 0.241\times \frac{1}{2} \times m \times v_e^2 = 0.241\times \frac{1}{2} \times m  \times \frac{2GM}{R_E} = \frac{0.241mGM}{R_E}

Therefore we put  \frac{0.241GM}{R_E} in the maximum height equation to get

\frac{0.241}{R_E} -\frac{1}{R_E} =-\frac{1}{r}

From which we get

r = 1.32·R_E

(c) The we have the least initial mechanical energy, ME given by

ME = KE - PE

Where the KE = PE required to leave the earth we have

ME = KE - KE = 0

The least initial mechanical energy to leave the earth is zero.

You might be interested in
Coulomb’s law and static point charge ensembles (15 points). A test charge of 2C is located at point (3, 3, 5) in Cartesian coor
fenix001 [56]

Answer:

a) F_{r}= -583.72MN i + 183.47MN j + 6.05GN k

b) E=3.04 \frac{GN}{C}

Step-by-step explanation.

In order to solve this problem, we mus start by plotting the given points and charges. That will help us visualize the problem better and determine the direction of the forces (see attached picture).

Once we drew the points, we can start calculating the forces:

r_{AP}^{2}=(3-0)^{2}+(3-0)^{2}+(5+0)^{2}

which yields:

r_{AP}^{2}= 43 m^{2}

(I will assume the positions are in meters)

Next, we can make use of the force formula:

F=k_{e}\frac{q_{1}q_{2}}{r^{2}}

so we substitute the values:

F_{AP}=(8.99x10^{9})\frac{(1C)(2C)}{43m^{2}}

which yields:

F_{AP}=418.14 MN

Now we can find its components:

F_{APx}=418.14 MN*\frac{3}{\sqrt{43}}i

F_{APx}=191.30 MNi

F_{APy}=418.14 MN*\frac{3}{\sqrt{43}}j

F_{APy}=191.30MN j

F_{APz}=418.14 MN*\frac{5}{\sqrt{43}}k

F_{APz}=318.83 MN k

And we can now write them together for the first force, so we get:

F_{AP}=(191.30i+191.30j+318.83k)MN

We continue with the next force. The procedure is the same so we get:

r_{BP}^{2}=(3-1)^{2}+(3-1)^{2}+(5+0)^{2}

which yields:

r_{BP}^{2}= 33 m^{2}

Next, we can make use of the force formula:

F_{BP}=(8.99x10^{9})\frac{(4C)(2C)}{33m^{2}}

which yields:

F_{BP}=2.18 GN

Now we can find its components:

F_{BPx}=2.18 GN*\frac{2}{\sqrt{33}}i

F_{BPx}=758.98 MNi

F_{BPy}=2.18 GN*\frac{2}{\sqrt{33}}j

F_{BPy}=758.98MN j

F_{BPz}=2.18 GN*\frac{5}{\sqrt{33}}k

F_{BPz}=1.897 GN k

And we can now write them together for the second, so we get:

F_{BP}=(758.98i + 758.98j + 1897k)MN

We continue with the next force. The procedure is the same so we get:

r_{CP}^{2}=(3-5)^{2}+(3-4)^{2}+(5-0)^{2}

which yields:

r_{CP}^{2}= 30 m^{2}

Next, we can make use of the force formula:

F_{CP}=(8.99x10^{9})\frac{(7C)(2C)}{30m^{2}}

which yields:

F_{CP}=4.20 GN

Now we can find its components:

F_{CPx}=4.20 GN*\frac{-2}{\sqrt{30}}i

F_{CPx}=-1.534 GNi

F_{CPy}=4.20 GN*\frac{2}{\sqrt{30}}j

F_{CPy}=-766.81 MN j

F_{CPz}=4.20 GN*\frac{5}{\sqrt{30}}k

F_{CPz}=3.83 GN k

And we can now write them together for the third force, so we get:

F_{CP}=(-1.534i - 0.76681j +3.83k)GN

So in order to find the resultant force, we need to add the forces together:

F_{r}=F_{AP}+F_{BP}+F_{CP}

so we get:

F_{r}=(191.30i+191.30j+318.83k)MN + (758.98i + 758.98j + 1897k)MN + (-1.534i - 0.76681j +3.83k)GN

So when adding the problem together we get that:

F_{r}=(-0.583.72i + 0.18347j +6.05k)GN

which is the answer to part a), now let's take a look at part b).

b)

Basically, we need to find the magnitude of the force and divide it into the test charge, so we get:

F_{r}=\sqrt{(-0.583.72)^{2} + (0.18347)^{2} +(6.05)^{2}}

which yields:

F_{r}=6.08 GN

and now we take the formula for the electric field which is:

E=\frac{F_{r}}{q}

so we go ahead and substitute:

E=\frac{6.08GN}{2C}

E=3.04\frac{GN}{C}

7 0
3 years ago
g The international space station has an orbital period of 93 minutes at an altitude (above Earth's surface) of 410 km. A geosyn
krok68 [10]

Answer:

r = 4.21 10⁷ m

Explanation:

Kepler's third law It is an application of Newton's second law where the forces of the gravitational force, obtaining

            T² = (\frac{4\pi }{G M_s} ) r³             (1)

           

in this case the period of the season is

            T₁ = 93 min (60 s / 1 min) = 5580 s

            r₁ = 410 + 6370 = 6780 km

            r₁ = 6.780 10⁶ m

for the satellite

           T₂ = 24 h (3600 s / 1h) = 86 400 s

if we substitute in equation 1

            T² = K r³

            K = T₁²/r₁³

            K = \frac{ 5580^2}{ (6.780 10^6)^2}

            K = 9.99 10⁻¹⁴ s² / m³

we can replace the satellite values

            r³ = T² / K

            r³ = 86400² / 9.99 10⁻¹⁴

            r = ∛(7.4724 10²²)

            r = 4.21 10⁷ m

this distance is from the center of the earth

7 0
3 years ago
A photon in a laboratory experiment has an energy of 5 eV. What is the frequency of this photon? (using the idea of the electron
andreyandreev [35.5K]
Answer and working shown on photo

7 0
3 years ago
Una partícula se mueve en el plano XY efectúa un desplazamiento mientras actúa sobre ella una fuerza constante. X= (4i + 3j) m,
dsp73

Answer:

a) La magnitud del desplazamiento es de 5 m

La magnitud de la fuerza es 20 N

b) El trabajo realizado por la fuerza es de 100 J

c) El ángulo entre la fuerza y el plano es 0 °

Explanation:

a) La magnitud del desplazamiento se encuentra por la relación;

\left | X \right | = \sqrt{X_{x}^{2}+X_{y}^{2}}

Lo que da;

\left | X \right | = \sqrt{4^{2}+3^{2}} = 5 \ m

De manera similar, la magnitud de la fuerza, F, se encuentra como sigue;

\left | F \right | = \sqrt{F_{x}^{2}+F_{y}^{2}}

Lo que da;

\left | F \right | = \sqrt{16^{2}+12^{2}} = 20 \ N

b) El trabajo, W, realizado por la fuerza = Fuerza, F × Distancia, X

∴ Ancho = 20 N × 5 m = 100 N · m = 100 J

c) La dirección de la fuerza viene dada por la siguiente fórmula;

tan^{-1} \left (\dfrac{F_y}{F_x} \right ) = tan^{-1} \left (\dfrac{12}{16} \right )  = 38.9^{\circ}

La dirección del plano viene dada por la siguiente fórmula;

tan^{-1} \left (\dfrac{X_y}{X_x} \right ) = tan^{-1} \left (\dfrac{3}{4} \right )  = 38.9^{\circ}

Por tanto, el ángulo entre la fuerza y el plano = 0 °

La fuerza actúa a lo largo del plano.

6 0
3 years ago
The peak intensity of a radiation from star beta is 350nm in what spectral bands is this
Olenka [21]

good job i hope you do good



5 0
3 years ago
Other questions:
  • Can an object form two or more shadows at the same how
    15·2 answers
  • How did Einstein’s and Newton’s theories differ in terms of explaining the cause of gravity?
    15·2 answers
  • For the circuit, suppose C=10µF, R1=1000Ω, R2=3000Ω, R3=4000Ω and ls=1mA. The switch closes at t=0s.1) What is the value of Vc (
    11·1 answer
  • Two sound waves (wave X and wave Y) are moving through a medium at the same speed. If wave X has a greater frequency than wave Y
    5·1 answer
  • WILL MARK BRAINLIEST!!!!!<br> How is the 3rd law different from the 1st and 2nd laws?
    15·1 answer
  • 10. A 90 kg box is sliding across a surface at a constant velocity while experiencing a rightward applied
    13·2 answers
  • PLEASE HELP ASAP
    11·1 answer
  • 5. A 2000 kg truck has a momentum of 90,000 kg m/s. What is the velocity of the<br> truck?
    5·1 answer
  • Would someone just answer this now?
    9·1 answer
  • A biker accelerates from 22m/s to 62m/s. His acceleration was 10m/s2. How long did it take to speed up? (select the correct equa
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!