Answer:
A) F=-20.16×10⁹N
B) if the distance doubles, force is 4 times smaller.
Explanation:
q1=-28C
q2=5mC=0.005C
d=25cm=0.25m
Electrostatic force between charges: F=k×q1×q2/d², where k is a coefficient that has the value k=9 × 10⁹ N⋅m²⋅C^(-2) for air.
Thus:
F=9×10⁹×(-28)×0.005/0.25²
F=-20.16×10⁹N
The minus sign indicates attraction.
If distance doubles, d1=2×d, then we have 4d² at the denominator and the force is 4 times smaller.
The launch velocity of the marble launcher is 34.65 m/s
Given that the launch velocity of marble launcher, launches a 25g marble to a distance of 73 cm (0.73 m) and the marble roll up to 6.2 meters before stopping. The launch height is 20 cm (0.2 m).
The time for landing can be calculated by the second equation of motion formula:
h = ut +
g
Let u = 0
0.2 = 0×t +
× 9.8 × 
= 
= 0.04
t = 0.2s
Now, the launch velocity of the marble launcher can be calculated by:
Speed = Distance / Time
Speed = 
Speed = 
Speed = 34.65 m/s
Therefore, the launch velocity of the marble launcher is 34.65 m/s
Know more about Launch velocity: -brainly.com/question/18883779
#SPJ9
Answer:
The torque is 0.31 Nm.
Explanation:
Electrical energy, E = 8400 J
time, t = 1 min
Angular speed, w = 2900 rpm = 303.53 rad/s
efficiency = 2/3 of input power
The toque is given by

Answer:
Voltage Drop Testing
Explanation:
The motives behind conducting Voltage Drop Testing is to recognize or identify the presence of unwanted resistance in the wire. or any other electrical appliance. The appliance used to calculate the voltage drop is digital volt ohmmeters.
voltage drop is the amount of loss of voltage due to resistance when electric current flow through the circuit. Thus measuring the voltage drop in respect to the amount of current flow, resistance can be measured.
Explanation:
The total energy of an aircraft flying in the atmosphere can be calculated using equation 1. [2]
E = ½ m v2 + mgh
A Boeing 737-300 has a maximum takeoff weight of 5.65 × 104 kg, a cruise altitude of h = 10,195 m, and cruise speed of 221 m/sec. Inserting these numbers into the above equation, we obtain 7.03 GJ for the energy at cruise conditions. [3] However, the engines mounted onto the wings of the plane are required to provide additional energy per time, power, in order to keep the aircraft flying at a constant altitude and speed
Work is the energy needed to apply a force to move an object a particular distance, where force is parallel to the displacement. Power is the rate at which that work is done.