If the boat's speed is s, and the river's speed is r, and the boat is traveling east (0 degrees),
(0,r) + (s cos297,s sin297) = (6,0)
now just solve for r and s.
Pls mark me as brainliest
Answer:
The distance from charge 5 μ C = 26.45 cm and the distance from - 4 μ C is 23.55 cm.
Explanation:
Given that
q₁ = 5 μ C
q₂ = - 4 μ C
The distance between charges = 50 cm
d= 50 cm
Lets take at distance x from the charge μ C ,the electrical field is zero.
That is why the distance from the charge - 4 μ C = 50 - x cm
We know that ,electric field is given as


Therefore the distance from charge 5 μ C = 26.45 cm and the distance from - 4 μ C is 23.55 cm.
All wheelchairs may be secured
so that the user is facing the curb side of the vehicle is true. The answer is
letter A. It provides a unique 180 degree powered rotation which makes it
possible to raise, lower and rotate fully.
Answer:
The lose of thermal energy is, Q = 22500 J
Explanation:
Given data,
The mass of aluminium block, m = 1.0 kg
The initial temperature of block, T = 50° C
The final temperature of the block, T' = 25° C
The change in temperature, ΔT = 50° C - 25° C
= 25° C
The specific heat capacity of aluminium, c = 900 J/kg°C
The formula for thermal energy,
<em>Q = mcΔT</em>
= 1.0 x 900 x 25
= 22500 J
Hence, the lose of thermal energy is, Q = 22500 J
Answer:

Explanation:
The heaviside function is defined as:

so we see that the Heaviside function "switches on" when
, and remains switched on when 
If we want our heaviside function to switch on when
, we need the argument to the heaviside function to be 0 when 
Thus we define a function f:

The
term inside the heaviside function makes sure to displace the function 5 units to the right.
Now we just need to add a scale up factor of 240 V, because thats the voltage applied after the heaviside function switches on. (
when
, so it becomes just a 1, which we can safely ignore.)
Therefore our final result is:

I have made a sketch for you, and added it as attachment.