Instantaneous impulse and continuous force: these are the foundations of Newton laws. In short explanation; concept of force and mass.
Answer:
λ = 864 nm
Explanation:
To find the wavelength of the light you use the following formula, which determines the position of the m-th fringe in an interference pattern:
(1)
ym: position of a bright fringe
D: distance from the slits to the screen = 3,7 m
d: distance between slits = 0,2mm = 0,2 *10^-3 m
m: order of the fringe
λ: wavelength of the light
You have the distance from the central peak to the third fringe (0,048m). Then, you can use the equation (1) with m=3 and solve for the wavelength:

henc, the wavelength of the light is 864nm
The reason why there is a difference between free-fall acceleration is a centrifugal force.
I attached a diagram that shows how this force aligns with the force of gravity.
From the diagram we can see that:

Where g' is the free-fall acceleration when there is no centrifugal force, r is the radius of the planet, and w is angular frequency of planet's rotation.

is the latitude.
We can calculate g' and wr^2 from the given conditions in the problem.

Our final equation is:

Colatitude is:

The answer is:
An electron has a negative charge. Hope this helps.
When visible light, X rays, gamma rays, or other forms of electromagnetic radiation are shined on certain kinds of matter, electrons are ejected. That phenomenon is known as the photoelectric effect. The photoelectric effect was discovered by German physicist Heinrich Hertz (1857–1894) in 1887. You can imagine the effect as follows: Suppose that a metal plate is attached by two wires to a galvanometer. (A galvanometer is an instrument for measuring the flow of electric current.) If light of the correct color is shined on the metal plate, the galvanometer may register a current. That reading indicates that electrons have been ejected from the metal plate. Those electrons then flow through the external wires and the galvanometer. HOPE THIS HELPED