Stir it,
Or as warmer water makes solutes dissolve faster Sarah can do that
Spinning top, moving car, and rolling ball have kinetic energy I believe
Interesting problem. Thanks for posting.
C2H2 + (3/2)02 ====> H2O + 2CO2
CH4 + 2O2 =====> 2H2O + CO2
The molar mass of C2H2 = 2*12 + 2*1 = 26
The molar mass of CH4 = 1*12 + 4*1 = 16
The number of moles of C2H2 = x
The number of moles of CH4 = y
26x + 16y = 230.9 grams
For water we get (from the C2H2). Water has a molar mass of 2*1 + 16 = 18
x*18 See the balanced equation to see what it is the same number of moles as C2H2
From the methane we get
y*18
2*y* 18. Again see the balanced equation to see where that 2 came from.
18x + 36y is the total amount of water.
Now for the CO2. CO2 has a molar mass of 12 + 2*16 = 44
From C2H2 we get 2*44*x = 88x grams of CO2
From CH4 we get 1*y*44 grams of CO2
88x + 44y for CO2
Now we total to get the grand total of water and CO2
18x + 44y + 88x + 44y = 972.7 grams total.
106x + 88y = 972.7
Two equations, two unknowns, we should be able to solve this problem
26x + 16y = 230.9
106x + 88y = 972.7
I'm not going to go through the math unless you request me to do so.
x = 8.03 moles
y = 1.38 moles
The initial amount of C2H2 was 8.03 * 26 = 208.78
The initial amount of CH4 was 16*1.38 = 22.08
The total (as a check is 230.86 which is pretty close to the given amount.
So Methane's mass in the initial givens was 22.08 grams.
I think the answer is ‘repulsion’
Answer:
Number of moles = 0.0005 mol.
Explanation:
Given data:
pH = 3
Volume of solution = 500 mL
Number of moles = ?
Solution:
HCl dissociate to gives H⁺ and Cl⁻
HCl → H⁺ + Cl⁻
It is known that,
pH = -log [H⁺]
3 = -log [H⁺]
[H⁺] = 10⁻³ M
[H⁺] = 0.001 M
Number of moles of HCl:
Molarity = number of moles / Volume in litter
Number of moles = Molarity × Volume in litter
Number of moles = 0.001 mol/L × 0.5 L
Number of moles = 0.0005 mol