Answer:
Iron remains = 17.49 mg
Explanation:
Half life of iron -55 = 2.737 years (Source)
Where, k is rate constant
So,
The rate constant, k = 0.2533 year⁻¹
Time = 2.41 years
= 32.2 mg
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
So,
<u>Iron remains = 17.49 mg</u>
Answer:
101,37°C
Explanation:
Boiling point elevation is one of the colligative properties of matter. The formula is:
ΔT = kb×m <em>(1)</em>
Where:
ΔT is change in boiling point: (X-100°C) -X is the boiling point of the solution-
kb is ebulloscopic constant (0,52°C/m)
And m is molality of solution (mol of ethylene glycol / kg of solution). Moles of ethylene glycol (MW: 62,07g/mol):
203g × (1mol /62,07g) = <em>3,27moles of ethlyene glycol</em>
<em />
Molality is: 3,27moles of ethlyene glycol / (1,035kg + 0,203kg) = 2,64m
Replacing these values in (1):
X - 100°C = 0,52°C/m×2,64m
X - 100°C = 1,37°C
<em>X = 101,37°C</em>
<em></em>
I hope it helps!
Rust (Fe2O3. 4H2O) is formed when iron interacts slowly with oxygen and water. Mass of Fe in grams is 2.18 x 10⁴ g.
<h3>
What is the explanation?</h3>
There are 2 moles of Fe atoms in 1 mole of Fe2O3-4H2O. The number of moles of Fe atoms in 45.2 kg rust is shown below.
Moles of Fe = 195.01 mol Fe₂O₃.4H₂O (
)
Moles of Fe = 390.02 mol Fe
Multiply the calculated number of moles of iron, Fe, by its molar mass which is 55.85 
Mass of Fe = 390.02 mol Fe (
)
Mass of Fe = 2.18 x 10⁴ g Fe
Avogadro's number (6.022 x 1023) of molecules (or formula units) make up one mole of a substance (ionic compound). The mass of 1 mole of a chemical is indicated by its molar mass. It provides you with the amount of grams per mole of a substance, to put it another way.
To learn more about moles visit:
brainly.com/question/26416088
#SPJ4