1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zepelin [54]
3 years ago
15

____ are streamlike movements of water in the ocean.(what is blank)

Physics
1 answer:
Xelga [282]3 years ago
7 0
Ocean currents are the stream like movements
You might be interested in
The circuits, P and Q, show two different ammeter-voltmeter methods of measuring resistance. Suppose the ammeter has a resistanc
qaws [65]

Answer:

Uncorrected values for

For circuit P

R = 2.4 ohm

For circuit Q

R = 2.4 ohm

Corrected values

for circuit P

R = 12 OHM

For circuit Q

R = 2.3 ohm

Explanation:

Given data:

Ammeter resistance 0.10 ohms

Resister resistance 3.0 ohms

Voltmeter read 6 volts

ammeter reads 2.5 amp

UNCORRECTED VALUES FOR

1) circuit P

we know that IR =V

R = \frac{6}{2.5} - 2.4 ohm

2) circuit Q

R = 2.4 ohm as no potential drop across ammeter

CORRECTED VALUES FOR

1) circuit p

IR = V

\frac{3R}{R+3} \times 2.5 = 6

R= 12 ohm

2) circuit Q

I\times (R+0.1) =V

R+0.1 =\frac{6}{2.5}

R = 2.3 ohm

5 0
3 years ago
A 3 kg object is attached to a 1000 N/m spring. The spring is compressed 0.10 m and then the spring launches the object horizont
Viktor [21]

Answer:

1.826m/s

Explanation:

E=1/2*k*(∆L)^2

E=1/2*mV^2

6 0
3 years ago
What allows the bimetallic coil to turn on or off a heating or cooling system? The two metals contract the same amount. The ther
Vedmedyk [2.9K]

Answer:

The two metals expand differently.

Explanation:

The bimetallic strip has two metal strips positioned like a bridge, these strips connect the electrical circuit to the heating system. When these strips are linear or "down" they allow the electricity to move through the circuit to the heating system to turn the heat on. When the strips are "up" the disconnect the electricity flow, thus turning the heating system off, thus the room becomes cool/cold.

3 0
3 years ago
A package of mass m is released from rest at a warehouse loading dock and slides down a 3.0-m-high frictionless chute to a waiti
LuckyWell [14K]

Answer:

The speed of the package of mass m right before the collision = 7.668\ ms^-1

Their common speed after the collision = 2.56\ ms^-1

Height achieved by the package of mass m when it rebounds = 0.33\ m

Explanation:

Have a look to the diagrams attached below.

a.To find the speed of the package of mass m right before collision we have to use law of conservation of energy.

K_{initial} + U_{initial} = K_{final}+U_{final}

where K is Kinetic energy and U is Potential energy.

K= \frac{mv^2}{2} and U= mgh

Considering the fact  K_{initial} = 0\ and U_{final} =0 we will plug out he values of the given terms.

So V_{1}{(initial)} =\sqrt{2gh} = \sqrt{2\times9.8\times3} = 7.668\ ms^-1

Keypoints:

  • Sum of energies and momentum are conserved in all collisions.
  • Sum of KE and PE is also known as Mechanical energy.
  • Only KE is conserved for elastic collision.
  • for elastic collison we have e=1 that is co-efficient of restitution.

<u>KE = Kinetic Energy and PE = Potential Energy</u>

b.Now when the package stick together there momentum is conserved.

Using law of conservation of momentum.

m_1V_1(i) = (m_1+m_2)V_f where V_1{i} =7.668\ ms^-1.

Plugging the values we have

m\times 7.668 = (3m)\times V_{f}

Cancelling m from both sides and dividing 3 on both sides.

V_f = 2.56\ ms^-1

Law of conservation of energy will be followed over here.

c.Now the collision is perfectly elastic e=1

We have to find the value of V_{f} for m mass.

As here V_{f}=-2.56\ ms^-1 we can use that if both are moving in right ward with 2.56 then there is a  -2.56 velocity when they have to move leftward.

The best option is to use the formulas given in third slide to calculate final velocity of object 1.

So

V_{1f} = \frac{m_1-m_2}{m_1+m_2} \times V_{1i}= \frac{m-2m}{3m} \times7.668=\frac{-7.668}{3} = -2.56\ ms^-1

Now using law of conservation of energy.

K_{initial} + U_{initial} = K_{final}+U_{final}

\frac{m\times V(f1)^2}{2} + 0 = 0 +mgh

\frac{v(f1)^2}{2g} = h

h= \frac{(-2.56)^2}{9.8\times 3} =0.33\ m

The linear momentum is conserved before and after this perfectly elastic collision.

So for part a we have the speed =7.668\ ms^-1 for part b we have their common speed =2.56\ ms^-1 and for part c we have the rebound height =0.33\ m.

3 0
3 years ago
We dont see objects. We see the light ____ off objects.
Romashka [77]
The answer is BBBBBBBBB
4 0
3 years ago
Other questions:
  • Fitness can be achieved only through
    11·2 answers
  • A roller coaster, traveling with an initial speed of 15 meters per second, decelerates uniformly at â7.0 meters per second2 to a
    11·1 answer
  • Which describes density?
    13·2 answers
  • What is the force of a 12 kg rock falling at 9.8m/s/s
    6·1 answer
  • Trial 1: Get a textbook and put a sheet of paper on top of it. Fold the paper as needed to keep the paper from sticking over the
    7·1 answer
  • How can you determine an object's average velocity from a position time graph
    7·1 answer
  • HELP<br> What is the momentum of a 50-kg ice skater gliding across the ice at a speed of 5 m/s?
    5·2 answers
  • AWARDING BRAINLIEST (~ ̄▽ ̄)~
    15·1 answer
  • Describe an object that emits radiation in Astronomy
    9·1 answer
  • Qual e sua idade<br> cgreg
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!