Answer:
The body must be moving with a constant non zero acceleration.
Explanation:
Force produces acceleration on any mass it is applied on. The acceleration produced depends on the magnitude and direction of the force. For this block being dragged by a constant horizontal force, The body will undergo a constant non-zero acceleration that will steadily increase its velocity along the direction of the force.
Answer:
c) may also be conserved
Explanation:
Momentum is conserved in both elastic and inelastic type of collisions.
But the differences is that:
In an ELASTIC type of collisions, KINETIC ENERGY IS ALSO CONSERVED.
whereas, In an INELASTIC type of collision, KINETIC ENERGY IS NOT CONSERVED.
So unless until type of collision is specified, we can not say anything about the conservation of kinetic energy after collision.
Hence, may also be conserved is the appropriate option here.
Answer: The correct answer is the weight of the wood.
Explanation:
Hope this helps
Answer:
option A
Explanation:
given,
Kinetic energy of the car = 2000 J
speed of the car is doubled
we know,

........(1)
now, speed of the car is doubled
v' = 2 v


from equation (1)



Hence, the Kinetic energy would be equal to 8000 J.
The correct answer is option A.
Answer:
Explanation:
A )
The ball floats with half of it exposed above the water level . So it must have density half that of water . In other words its density must have been 500 kg / m³
B )
Tension in the ball will be equal to net force acting on the ball
Net force on the ball = buoyant force - weight .
4/3 x π x .21³ x 10⁻⁶ x 9.8 ( 1000 - 893 )
= 40.65 x 10⁻⁶ N .
C )Tension in the 3 rd ball will be equal to net force acting on the ball
Net force on the ball = weight - buoyant force
= 4/3 x π x .21³ x 10⁻⁶ x 9.8 ( 1320 - 1000 )
= 121.6 x 10⁻⁶ N .