PART A)
Electrostatic potential at the position of origin is given by

here we have



now we have


Now work done to move another charge from infinite to origin is given by

here we will have

so there is no work required to move an electron from infinite to origin
PART B)
Initial potential energy of electron




Now we know



now by energy conservation we will have
So here initial total energy is sufficient high to reach the origin
PART C)
It will reach the origin
The speed of cart b is 6m/s while the total momentum of the systmen is 4200 kg m/s
<h3>Conservation of Linear Momentum</h3>
Given Data
- Mass of cart one M1 = 150kg
- Initial Velocity U1 = 8m/s
Mass of cart two M2 = 150kg
Velocity U2 = 6m/s
Applying the principle of conservation of linear momentum we have
M1U1+M2U2 = M1V1+ M2V2
a. what is the speed of cart b after collision
substituting our given data we have
150*8+ 150*6 = 150*5+150*V2
1200 + 900 = 1200+ 150V2
2100 - 1200 = 150V2
900 = 150V2
Divide both sides by 150
V2 = 900/150
V2 = 6m/s
b. what is the total momentum of the system before and after collision
Total Momentum in the system is
Total momentum = Momentum before Impact+ Momentum after Impact
Total momentum = M1U1+M2U2 + M1V1+ M2V2
Total momentum = 1200 + 900 + 1200+ 900
Total momentum = 4200 kg m/s
Learn more about Conservation of Linear Momentum here:
brainly.com/question/7538238
It is a stretch of the atmosphere ranging from the upper mesosphere to the lower parts of the thermosphere. It’s useful to us in radio communication.
Answer:
2 kg
Explanation:
Acceleration = 5 m/s^2
Force = 10 N
Force = mass * acceleration
mass = force / acceleration
mass = 10 / 5
mass = 2 kg