Answer:
The car strikes the tree with a final speed of 4.165 m/s
The acceleration need to be of -5.19 m/seg2 to avoid collision by 0.5m
Explanation:
First we need to calculate the initial speed 
Once we have the initial speed, we can isolate the final speed from following equation:
Then we can calculate the aceleration where the car stops 0.5 m before striking the tree.
To do that, we replace 62 m in the first formula, as follows:

Answer:
a = 52s²
Explanation:
<u>How to find acceleration</u>
Acceleration (a) is the change in velocity (Δv) over the change in time (Δt), represented by the equation a = Δv/Δt. This allows you to measure how fast velocity changes in meters per second squared (m/s^2). Acceleration is also a vector quantity, so it includes both magnitude and direction.
<u>Solve</u>
We know initial velocity (u = 16), velocity (v = 120) and acceleration (a = ?)
We first need to solve the velocity equation for time (t):
v = u + at
v - u = at
(v - u)/a = t
Plugging in the known values we get,
t = (v - u)/a
t = (16 m/s - 120 m/s) -2/s2
t = -104 m/s / -2 m/s2
t = 52 s
A
Cl is the chemical symbol for chlorine numbers after it are isotopes
When the velocity of an object changes, it is acted upon by a force