Answer:
A: 1.962
B: 3.924
Explanation:
g = G *M /R^2
g = 9.807*M/R^2 the gravitational constant of ground level on earth is about 9.807
g = 9.807*5lbs/R^2 the average brick is about 5 pounds.
g = 9.807*5*10^2. I'm assuming the height is around ten feet to help you out.
with these numbers plugged in you get an acceleration of 0.4905 a final velocity after 4 seconds 1.962. It's height fallen after 4 seconds is 3.924.
( M = whatever the brick weighs it's not specified in the question)
(R = the distance from the ground or how high the scaffold is)
(hopefully you can just plug your numbers in there hope this helps)
The distance an object falls from rest through gravity is
D = (1/2) (g) (t²)
Distance = (1/2 acceleration of gravity) x (square of the falling time)
We want to see how the time will be affected
if ' D ' doesn't change but ' g ' does.
So I'm going to start by rearranging the equation
to solve for ' t '.
D = (1/2) (g) (t²)
Multiply each side by 2 : 2 D = g t²
Divide each side by ' g ' : 2 D/g = t²
Square root each side: t = √ (2D/g)
Looking at the equation now, we can see what happens
to ' t ' when only ' g ' changes:
-- ' g ' is in the denominator; so bigger 'g' ==> shorter 't'
and smaller 'g' ==> longer 't' .
-- They don't change by the same factor, because 1/g is inside
the square root. So 't' changes the same amount as √1/g does.
Gravity on the surface of the moon is roughly 1/6 the value
of gravity on the surface of the Earth.
So we expect ' t ' to increase by √6 = 2.45 times.
It would take the same bottle (2.45 x 4.95) = 12.12 seconds
to roll off the same window sill and fall 120 meters down to the
surface of the Moon.
It has to be the last one because whenever lights are turned on it decreases because all lights are on at the same time. It's good to just have one light on. It doesn't use as much electricity.
Answer:
(a). Index of refraction are
= 1.344 &
= 1.406
(b). The velocity of red light in the glass
2.23 ×
The velocity of violet light in the glass
2.13 ×
Explanation:
We know that
Law of reflection is

Here
= angle of incidence
= angle of refraction
(a). For red light
1 ×
=
× 
= 1.344
For violet light
1 ×
=
× 
= 1.406
(b). Index of refraction is given by

= 1.344


2.23 ×
This is the velocity of red light in the glass.
The velocity of violet light in the glass is given by

2.13 ×
This is the velocity of violet light in the glass.