1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BigorU [14]
2 years ago
13

A 65-kg swimmer pushes on the pool wall and accelerates at 6 m/s^2. The friction experienced by the swimmer is 100 N. How many N

of force does the swimmer applies a force of
Physics
1 answer:
Helga [31]2 years ago
5 0

Answer:

490N

Explanation:

According Newton's second law!

\sum Force = mass × acceleration

Fm - Ff = ma

Fm is the moving force

Ff s the frictional force = 100N

mass = 65kg

acceleration = 6m/s²

Required

Moving force Fm

Substitute the given force into thr expression and get Fm

Fm -100 = 65(6)

Fm -100 = 390

Fm = 390+100

Fm = 490N

Hence the force that will cause two cart to move is 490N

You might be interested in
The shortest wavelengths that we can see are experienced as ______ colors.
nadezda [96]
Violet. Red is longest wavelength and lowest frequencyViolet is shortest wavelength and highest frequencyThe visible part of the whole electromagnetic spectrum.Sort of thing you see if you look through a prism in an laboratory optical spectrometer.
8 0
3 years ago
Work of 5 Joules is done in stretching a spring from its natural length to 19 cm beyond its natural length. What is the force (i
densk [106]

Answer:

Explanation:

Given that,

5J work is done by stretching a spring

e = 19cm = 0.19m

Assuming the spring is ideal, then we can apply Hooke's law

F = kx

To calculate k, we can apply the Workdone by a spring formula

W=∫F.dx

Since F=kx

W = ∫kx dx from x = 0 to x = 0.19

W = ½kx² from x = 0 to x = 0.19

W = ½k (0.19²-0²)

5 = ½k(0.0361-0)

5×2 = 0.0361k

Then, k = 10/0.0361

k = 277.008 N/m

The spring constant is 277.008N/m

Then, applying Hooke's law to find the applied force

F = kx

F = 277.008 × 0.19

F = 52.63 N

The applied force is 52.63N

6 0
3 years ago
Explain in your own words how the Doppler Effect is also applicable in our study of light.
arlik [135]

well in my own words, i'd saw the the doppler effect is similar to light because sound has a speed, and light does too.

so my theory is if you go fast enough everything would just become black, or maybe white? idk its hard to explain

but what my point is, is taht the doppler effect works in the same way, like if a car is moving towards you the sound is being emitted from the car and being pushed by the speed of the car making it have a much higher pitch, when the car is going away however it drops to a lower pitch due the the sound waves being DRAGGED by the car.

there hoped this helped I guess

8 0
3 years ago
(a) According to Hooke's Law, the force required to hold any spring stretched x meters beyond its natural length is f(x)=kx. Sup
KengaRu [80]

Answer:

a) The work required to stretch the spring from 20 centimeters to 25 centimeters is 0.313 joules, b) The area of the region enclosed by one loop of the curve r(\theta) = 2\cdot \sin 5\theta is 4\pi.

Explanation:

a) The work, measured in joules, is a physical variable represented by the following integral:

W = \int\limits^{x_{f}}_{x_{o}} {F(x)} \, dx

Where

x_{o}, x_{f} - Initial and final position, respectively, measured in meters.

F(x) - Force as a function of position, measured in newtons.

Given that F = k\cdot x and the fact that F = 25\,N when x = 0.3\,m - 0.2\,m, the spring constant (k), measured in newtons per meter, is:

k = \frac{F}{x}

k = \frac{25\,N}{0.3\,m-0.2\,m}

k = 250\,\frac{N}{m}

Now, the work function is obtained:

W = \left(250\,\frac{N}{m} \right)\int\limits^{0.05\,m}_{0\,m} {x} \, dx

W = \frac{1}{2}\cdot \left(250\,\frac{N}{m} \right)\cdot [(0.05\,m)^{2}-(0.00\,m)^{2}]

W = 0.313\,J

The work required to stretch the spring from 20 centimeters to 25 centimeters is 0.313 joules.

b) Let be r(\theta) = 2\cdot \sin 5\theta. The area of the region enclosed by one loop of the curve is given by the following integral:

A = \int\limits^{2\pi}_0 {[r(\theta)]^{2}} \, d\theta

A = 4\int\limits^{2\pi}_{0} {\sin^{2}5\theta} \, d\theta

By using trigonometrical identities, the integral is further simplified:

A = 4\int\limits^{2\pi}_{0} {\frac{1-\cos 10\theta}{2} } \, d\theta

A = 2 \int\limits^{2\pi}_{0} {(1-\cos 10\theta)} \, d\theta

A = 2\int\limits^{2\pi}_{0}\, d\theta - 2\int\limits^{2\pi}_{0} {\cos10\theta} \, d\theta

A = 2\cdot (2\pi - 0) - \frac{1}{5}\cdot (\sin 20\pi-\sin 0)

A = 4\pi

The area of the region enclosed by one loop of the curve r(\theta) = 2\cdot \sin 5\theta is 4\pi.

5 0
3 years ago
If a car travels 60 mph for a distance of 180 miles, how much time<br> did it take?
jolli1 [7]

Answer:

3 hours

Explanation:

180 divided by 60 (mph means miles per hours by the way)

6 0
3 years ago
Other questions:
  • The net force acting on a 50kg crate is 0 N. what is the crates accelratiin
    11·1 answer
  • (b) A 0.13−kg baseball thrown at 100 mph has a momentum of 5.9 kg · m/s. If the uncertainty in measuring the mass is 1.0 × 10−7
    6·1 answer
  • A flower pot falling 45 meters hits the ground with a speed of _________.a. about 60 m/s. b. about 120 m/s. c. more than 120 m/s
    12·1 answer
  • If a car can go from 0 to 60 mi/hr in 8.0 seconds, what would be its final speed after 5.0 seconds if its starting speed were 50
    15·2 answers
  • A 0.0400-g positive charged ball with charge q = 6.40 μC is resting on a flat, frictionless horizontal surface. For a time of t
    15·1 answer
  • How much dirt is there in a hole 3 feet deep, 6 ft long and 4 ft wide?
    12·2 answers
  • Easy Guided Online Tutorial A special electronic sensor is embedded in the seat of a car that takes riders around a circular loo
    6·1 answer
  • The Statue of Liberty is made of Copper that has turned on Says has WAGNE Bongo Wantse
    5·1 answer
  • Afootball is kicked at avelocity of 15 m/s at angle of 25 degree to the horizontal. What is the total flight time
    9·1 answer
  • A 1.23 x 10^3 kilogram car is traveling east at 25 meters per second. The brakes are applied and the car is brought to rest in 5
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!