Answer: when the wave encounters something, it can bounce (reflection) or be bent (refraction). In fact, you can "trap" waves by making them bounce back and forth between two or more surfaces. Musical instruments take advantage of this; they produce pitches by trapping sound waves.
Explanation: Any bunch of sound waves will produce some sort of noise. But to be a tone - a sound with a particular pitch - a group of sound waves has to be very regular, all exactly the same distance apart. That's why we can talk about the frequency and wavelength of tones.
First, we will get the distance traveled before the driver applied the brakes.
distance = velocity * time
distance = 25*0.34 = 8.5 m
Now, we will calculated the distance that the car traveled after the driver applied the brakes. To do this, we will use the equation of motion:
<span>vf^2 = vi^2 + 2*a*d where:
</span>vf = zero, vi = 25 m/s and a = -7 m/s^2
Note: The negative sign is only to show deceleration
d = <span> 1/2*(625) /(7) = 44.6428 m
The total stopping distance =</span> 8.5 + 44.6428 = 53.1428 m
Answer:
speed equals distance over time 50 divided by 5.
Answer:
I think the answer is a
Explanation:
for it to be accurate has be to exactly 0.9 rad
it is not precise because the answer she is getting is different everytime and not even close. For instance,
It would have been precise if she had gotten 0.37 rad in every attempt. or 0.89 every attempt...
Acceleration = force / mass.
A = 100/50 = 2 m/s^2 .