Through manipulation of equations, we are able to obtain the equation:
![-pOH= log [ OH^{-}]](https://tex.z-dn.net/?f=-pOH%3D%20log%20%5B%20OH%5E%7B-%7D%5D%20)
Then we can transform the equation into:
![[ OH^{-}]= 10^{-pOH}](https://tex.z-dn.net/?f=%5B%20OH%5E%7B-%7D%5D%3D%2010%5E%7B-pOH%7D%20%20)
Then we are able to plug in the pOH and directly get [OH-]:
![[ OH^{-}] = 10^{-6.48}](https://tex.z-dn.net/?f=%5B%20OH%5E%7B-%7D%5D%20%3D%2010%5E%7B-6.48%7D%20)
Answer:
Data obtained can't be accurate.
Explanation:
A beaker can't be used for measuring the volume of a liquid because they did not calculate volume of a liquid accurately and precisely. The marks present on the beaker are not accurate, it is just an estimate so by measuring the volume of any liquid using beaker give us a false data so that's why beaker are not used for the measurement of a volume.
Śhüt ûp and go pay attention in your class
The calculation for such a question can be achieved via Avogadro hypothesis
We know molar mass of CO2 is 44g/mole which is the sum of atomic masses i.e; C and 2 oxygen atoms
Molar mass of CO2 =12(C)+2*16(O) = 44 g/mole will contain 6.023 ※10^23 CO2 molecules ..
44g/mole = 6.023 ※10^23 CO2 molecules
=> 1g = (6.023/44) ※10^23 CO2 molecules
==> 8.80g = 8.80(6.023÷44)10^23 = 1.2046 ※10^23 molecules of CO2….
Thus there r 1.2046 ※10^23 molecules of CO2 in 8.80g
if u need to calculate no. of carbon atoms then multiply result by 1 and if u need no of oxygen atoms in 8.80g of co2 then multiply the result by 2 ….