The answer is 1000/20. Or that’s what I’m guessing. Lol
Answer:
The magnitude of the electric field are
and 
Explanation:
Given that,
Radius of inner shell = 11.0 cm
Radius of outer shell = 14.0 cm
Charge on inner shell 
Charge on outer shell 
Suppose, at r = 11.5 cm and at r = 20.5 cm
We need to calculate the magnitude of the electric field at r = 11.5 cm
Using formula of electric field

Where, q = charge
k = constant
r = distance
Put the value into the formula


The total charge enclosed by a radial distance 20.5 cm
The total charge is

Put the value into the formula


We need to calculate the magnitude of the electric field at r = 20.5 cm
Using formula of electric field

Put the value into the formula


Hence, The magnitude of the electric field are
and 
Answer:
(a), (c) and (e) s correct.
Explanation:
a. the power used by a circuit is the resistance times the current squared.
The power is given by P = I^2 R, so the statement is correct.
b. electric and magnetic fields are transporting the energy.
false
c. electrons are transporting the energy.
The energy is transferred by flow of electrons. It is correct.
d. the power used by a circuit is the voltage times the current squared.
The power is given by P = V I, the statement is wrong.
e. the power used by a circuit is the current times the voltage.
The power is given by P = V I, the statement is correct.
Answer:
<em> The distance required = 16.97 cm</em>
Explanation:
Hook's Law
From Hook's law, the potential energy stored in a stretched spring
E = 1/2ke² ......................... Equation 1
making e the subject of the equation,
e = √(2E/k)........................ Equation 2
Where E = potential Energy of the stretched spring, k = elastic constant of the spring, e = extension.
Given: k = 450 N/m, e = 12 cm = 0.12 m.
E = 1/2(450)(0.12)²
E = 225(0.12)²
E = 3.24 J.
When the potential energy is doubled,
I.e E = 2×3.24
E = 6.48 J.
Substituting into equation 2,
e = √(2×6.48/450)
e = √0.0288
e = 0.1697 m
<em>e = 16.97 cm</em>
<em>Thus the distance required = 16.97 cm</em>
Answer:
rad
Explanation:
∅ =
= 
∅ =
rad
The minimum resolvable angle =
rad