The electrical force acting on a charge q immersed in an electric field is equal to
where
q is the charge
E is the strength of the electric field
In our problem, the charge is q=2 C, and the force experienced by it is
F=60 N
so we can re-arrange the previous formula to find the intensity of the electric field at the point where the charge is located:
<span>Given:
3,500 kilometers
Find:</span>
Years for two continents to collide = ?
<span>Solution:
We know that </span>typical motions of one plate relative to another
are 1 centimeter per year.
So first, we convert 3,500 km to cm.<span>
</span><span>
</span>
The solution would be like this for this specific problem:
1 km = 100,000 cm
3,500 km x 100,000 = 350,000,000 cm
Since we know that 1 cm = 1 year, then that means
350,000,000 cm is equivalent to 350,000,000 years.
Therefore, it would take 350 million years for two continents
that are 3500 kilometers apart to collide.
<span>
To add, </span>a phenomenon of the plate tectonics of Earth that occurs at
convergent boundaries is called the continental collision.
The answer is, C. the wavelength is measured in parallel to the direction of the wave, at any point, under the same repetition for any type of wave.
Answer:
a) V = 195.70 m/s
b) f=3.02 × 10⁻⁴ Hz
c) T = 3311.25 seconds
Explanation:
Given:
Wavelength, λ = 646 Km = 646000 m
Distance traveled = 3410 Km = 3410000 m
Time = 4.84 h = 4.84 × 3600 s = 17424 seconds
a) The speed (V) of the wave is given as
V = distance / time
V = 3410000 m/ 17424 seconds
or
V = 195.70 m/s
b) The frequency (f) of the wave is given as:
f = V / λ
f= 195.70 / 646000
f=3.02 × 10⁻⁴ Hz
c) The time period (T) is given as:
T = 1/ f
T = 1/ (3.02 × 10⁻⁴) Hz
T = 3311.25 seconds