Answer:
I will assume that “maximum force” implies the constant application of power P = 400 hp (international) to accelerating the vehicle. The force will therefore vary with speed as the vehicle accelerates. I will also assume that all engine energy goes into accelerating the vehicle, rather than rotating elements like its wheels.
In this case the 400 hp (equivalent to 298,280 watts) is applied for time t = 2 seconds. Therefore the kinetic energy of the vehicle is increased by:
ΔKE=Pt=(298,280)(2)=596,560 joules.
The initial kinetic energy is:
KEinitial=12mv2
=(0.5)(1600)(82)=51,200 joules.
Therefore final kinetic energy is:
KEfinal=KEinitial+ΔKE
=51,200+596,560
=647,760 joules
Therefore final vehicle velocity can be found:
KEfinal=12mv2
v=2KEfinalm−−−−−−−−√
=(2)(647,760)1600−−−−−−−−−−−√
= 28.455 m/s
Explanation:
Answer:
the resistance of the second wire is 1 ohm.
Explanation:
Given;
cross sectional area of the first wire, A₁ = 5.00 x 10⁶ m²
resistance of the first wire, R₁ = 1.75 ohms
cross sectional area of the second wire, A₂ = 8.75 x 10⁶ m²
resistance of the second wire, R₂ = ?
The resistance of a wire is given as;
R ∝ 
Since the length of the two wires is constant
R₁A₁ = R₂A₂

Therefore, the resistance of the second wire is 1 ohm.
Solution
Force between pair of objects of masses 1kg and 2kg that are 1m apart is given as

here G is gravitational constant
G=
therefore,


similarly Force between pair of objects of masses 2kg each that are 1m apart is given as



or F'=2F
it means Force between pair of objects of masses 2kg each that are 1m apart is equal to twice the Force between pair of objects of masses 1kg and 2kg that are 1m
Answer:
please find the attachment to this question.
Explanation:
In this question, we represent the 100N in the North-East direction, but first, we define the vector representation:
It is generally represented through arrows, whose length and direction reflect the magnitude and direction of the arrow points. In this, both size and direction are necessary because the magnitude of a vector would be a number that can be compared to one vector.
Please find the attachment:
Answer:
An unbalanced force can change an object's motion. An unbalanced force acting on a still object could make the object start moving. An unbalanced force acting on a moving object could make the object change direction, change speed, or stop moving.