Answer:
Force of Rope = 122.5 N
Force of Rope = 480.2N
Explanation:
given data
length = 3.00 m
mass = 25.0 kg
clown mass = 79.0 kg
angle = 30°
solution
we get here Force of Rope on with and without Clown that is
case (1) Without Clown
pivot would be on the concrete pillar so Force of Rope will be
Force of Rope × 3m = (25kg)×(9.8ms²)×(1.5m)
solve it and we get
Force of Rope = 122.5 N
and
case (2) With Clown
so here pivot is still on concrete pillar and clown is standing on the board middle and above the centre of mass so Force of Rope will be
Force of Rope × 3m = (25kg+73kg)×(9.8ms²)×(1.5m)
solve it and we get
Force of Rope = 480.2N
Atomic emission spectra are like fingerprints for the elements, because it can show the number of orbits in that elements as well as the energy levels of that element. As each emission of atomic spectra is unique, it is the fingerprint of element.
<u>Explanation:
</u>
Each element has unique arrangement of electrons in different energy levels or orbits. So depending upon the difference in energy of the orbital, the emission spectra will be varying for each element. As the binding energy and excitation energy is not common for any two elements, so the spectra obtained when those excited electrons will release energy to ground state will also be unique.
As in atomic emission spectra, the incident light will be absorbed by the electrons of those elements making the electron to excite, then the excited electron will return to ground state on emission of radiation of energy. Thus, this energy of emission is equal to the difference between the energy of initial and final orbital. So the spectra will act like fingerprints for elements.
Answer:
<h2>0.5J</h2>
Explanation:
given data
Force applied F= 1N
extension e= 0.1m
let us find the spring constant first
applying
F=ke
k=F/e
k=1/0.1
k=10N/m
Step two:
Required is the work done
we know that the expression/formula for the work done by a spring is given as
Wd=1/2kx^2
x=0.4m
substitute
Wd= 1/2*10*0.4^2
Wd=0.5*10*0.16
Wd=0.5J
Aerospace engineering is responsible for a plane design