Well, we usually assume that the resistance of a circuit component
is constant and doesn't change. But the truth is that for anything
that conducts current, its resistance always increases somewhat
when it warms up.
For things like light bulbs, electric toasters, space heaters, electric
stove burners, the heat coils in a blow-dryer ... anything that's
designed to be really hot when it's doing its job ... the resistance
of those things increases significantly when they come up to their
operating temperatures.
Answer:first law
Explanation:
it states the a body in motion or rest maintain its state until an external force is acted on it
Answer:
-2.8 m/s²
Explanation:
Acceleration: This can be defined as the rate of change of velocity The S. I unit of acceleration is m/s²
Using the equation of motion,
v² = u² + 2as................... Equation 1
Where v = Final velocity, u = initial velocity, a = acceleration, s = distance,
Given: v = 6.0 m/s, u = 8.0 m/s, s = 5.0 m.
Substituting into equation 1
6² = 8²+2(a)5
36 = 64 + 10a
10a = 36-64
10a = -28
10a/10 = -28/10
a = -2.8 m/s²
Note: a is negative because because the skater decelerate on the rough ice
Hence the magnitude of her acceleration is = -2.8 m/s²
If we want the object to continue to move at constant speed, it means that the resultant of the forces acting on the object must be zero. So far, we have:
- force F1 with direction north, of 10 N
- force F2 with direction west, of 10 N
The third force must balance them, in order to have a net force of zero on the object.
The resultant of the two forces F1 and F2 is

with direction at

north-west. This means that F3 must be equal and opposite to this force: so, F3 must have magnitude 14.1 N and its direction should be

south-east.
Answer:81.235N
Explanation:
Work=88J
theta=10°
distance=1.1 meters
work=force x cos(theta) x distance
88=force x cos10 x 1.1 cos10=0.9848
88=force x 0.9848 x 1.1
88=force x 1.08328
Divide both sides by 1.08328
88/1.08328=(force x 1.08328)/1.08328
81.235=force
Force=81.235