<span>The maximum possible efficiency, i.e the efficiency of a Carnot engine , is give by the ratio of the absolute temperatures of hot and cold reservoir.
η_max = 1 - (T_c/T_h)
For this engine:
η_max = 1 - [ (20 +273)K/(600 + 273)K ] = 0.66 = 66%
The actual efficiency of the engine is 30%, i.e.
η = 0.3 ∙ 0.664 = 0.20 = 20 %
On the other hand thermal efficiency is defined as the ratio of work done to the amount of heat absorbed from hot reservoir:
η = W/Q_h
So the heat required from hot reservoir is:
Q_h = W/η = 1000J / 0.20 = 5000J</span>
Answer:
maximum speed of the bananas is 18.8183 m/s
Explanation:
Given data
amplitude A = 23.195 cm
spring constant K = 15.2676 N/m
mass of the bananas m = 56.9816 kg
to find out
maximum speed of the bananas
solution
we know that radial oscillation frequency formula that is = √(K/A)
radial oscillation frequency = √(15.2676/23.195)
radial oscillation frequency is 0.8113125 rad/s
so maximum speed of the bananas = radial oscillation frequency × amplitude
maximum speed of the bananas = 0.8113125 × 23.195
maximum speed of the bananas is 18.8183 m/s
The answer is True. The amount force exerted by any object is directly proportional to its mass. This means that our planet is exerting more gravitational force to Angelina, and Angelina is also exerting a gravitational force on our planet directly proportional to her mass. Angelina is actually falling towards the center of the earth,and also our planet is also moving towards Angelina, but it seems negligible with respect to Angelina.Our Sun is so massive that it held our planet in its orbit because of its gravitational force.
We have: Energy(E) = Planck's constant(h) × Frequency(∨)
Here, Planck's constant(h) = 6.626 × 10⁻³⁴ J/s
Frequency (∨) = 3.16 × 10¹² /s
Substitute the values into the expression:
E = (6.626 × 10⁻³⁴)(3.16 × 10¹²) J
E = 2.093 × 10⁻²¹ Joules
In short, Your Final answer would be 2.093 × 10⁻²¹ J
Hope this helps!