The bowling ball would have the most inertia because it has the most mass. Inertia is the ability to resist a change in motion. So, it sort of makes sense that the more massive an object, the more resistance it has against outside forces.
Bowling ball would be your answer since it has the most mass.
Answer: He came up with this by using theories like the photoelectric effect, the second offered experimental proof of the existence of atoms, and the third introduced the theory of special relativity.
Explanation: He was explaing the realationship between energy and mass.
Me: Hope this helps!!! May I have brainlist!?
The correct answer is 223 days.
The relationship between the duration of revolution and the separation between the sun is shown by Kepler's third law. Using the notions of circular motion and the gravitational and centripetal forces, we may obtain this equation.
According to Kepler's third rule, the semi-major axis of an orbit is linked to the orbital period of a planet around the sun as follows:
p² = a³
where an is the semi-major axis/distance to the star and p is the orbital period in years.
It is said that a = 0.72 AU for Venus.
P= √(0.72 AU)^3 = 0.61 years.
365 days in a year = 222.9 ≈ 223 days.
To learn more about Kepler's third rule refer the link:
brainly.com/question/1608361
#SPJ4
Answer:
1.37 ×10^-3 T
Explanation:
From;
B= μnI
μ = 4π x 10-7 N/A2
n= number of turns /length of wire = 1700/0.75 = 2266.67
I= 0.48 A
Hence;
B= 4π x 10^-7 × 2266.67 ×0.48
B= 1.37 ×10^-3 T
By unplugging unused devices, by turning off any unused lights, and by switching your lightbulbs to something more energy efficient.