Answer:
Corect answer is D
Explanation:
Assuming that the C
O
2 gas is behaving ideally, therefore, we can use the ideal gas law to find the pressure increase in the container by:
P
V=nRT ⇒ P=n
R
T
/V
n=no of moles of the gas = mass/molar mass
Molar mass o f C
O
2=44g/mol, mass = 44g
mole n = 1mole
T=20C=293K
R=0.0821L.atm/mol.K
P=nRT/V
P = 1 x 0.0821 x 293/2
P = 12atm
La velocidad del buzo es de 7.04 m/s, 8.84 m/s y 2.27 m/s respectivamente.
<h3 /><h3>Velocidad
</h3>
La velocidad es la relación entre la distancia total recorrida y el tiempo total empleado. Está dado por:
Velocidad = distancia/tiempo
Para 10m de altura:
- Velocidad = 10 m/1.42 s = 7.04 m/s
Para 3m de altura:
- Velocidad = 3 m/0.78 s = 3.84 m/s
Para 1m de altura:
- Velocidad = 1 m/0.44 s = 2.27 m/s
La velocidad del buzo es de 7.04 m/s, 8.84 m/s y 2.27 m/s respectivamente.
Obtenga más información sobre la velocidad en: brainly.com/question/4931057
Answer:
The heat of vaporization 580 cal/g times 602g = cal in human and do the same for life form.
Explanation:
Answer:
a) True. There is dependence on the radius and moment of inertia, no data is given to calculate the moment of inertia
c) True. Information is missing to perform the calculation
Explanation:
Let's consider solving this exercise before seeing the final statements.
We use Newton's second law Rotational
τ = I α
T r = I α
T gR = I α
Alf = T R / I (1)
T = α I / R
Now let's use Newton's second law in the mass that descends
W- T = m a
a = (m g -T) / m
The two accelerations need related
a = R α
α = a / R
a = (m g - α I / R) / m
R α = g - α I /m R
α (R + I / mR) = g
α = g / R (1 + I / mR²)
We can see that the angular acceleration depends on the radius and the moments of inertia of the steering wheels, the mass is constant
Let's review the claims
a) True. There is dependence on the radius and moment of inertia, no data is given to calculate the moment of inertia
b) False. Missing data for calculation
c) True. Information is missing to perform the calculation
d) False. There is a dependency if the radius and moment of inertia increases angular acceleration decreases