The amount of air resistance<span> an </span>object<span> experiences depends on its speed, its cross-sectional area, its shape and the density of the </span>air<span>. </span>Air<span> densities vary with altitude, temperature and humidity. Nonetheless, 1.29 kg/m</span>3<span> is a very reasonable value. The shape of an </span>object affects<span> the drag coefficient (C</span>d<span>)</span>
To solve this problem we will apply the definition of Newton's second law, which says that force is equivalent to body mass by acceleration. In this case the mass of the trailer is 325Kg and its acceleration is
, so we will proceed to replace and multiply these values to find the net force on this object.


F= 698.75N
Under the reference system in which the direction of travel is the positive direction, the direction of the force will be positive.
Answer:
400ft. 32ft/s -32ft/s
Explanation:
In reality the gravitational acceleration is 9.81 so the quadratic coefficient of the function should be 9.81/2
Anyway for the sake of assumtion let us takes=160t-16t^2
ds/dt=160-32t=0
t=160/32= 5 seconds.
s=160*160/32-16*(160/32)^2= 400 mts
s=384 mts
160t-16t^2=384
i.e
16t^2-160t+384=0
t^2-10t+24=0
(t-6)(t-4)=0
t=[4,6]
we have to take t=4 because it is all the up i.e <5
velocity =v=ds/dt=160-32t
v=160-32*4=32 ft/sec still going up
for all the way down take t=6 whuch is >5
v=160-6*32=-32 ft/sec (falling down!!!)
Answer:
option C
Explanation:
The correct answer is option C
There is no external force acting in the system hence the momentum will be conserved.
As the milk is leaking out of the tank mass of the tanker is decreasing.
When the mass of the container will decrease to conservation the momentum speed of the container will have to be increased.
So, the car carrying milk will speed up.