Answer:
62.34
Step-by-step explanation:
Substitute n = 0 to n = 5 into the expression and sum the terms, that is
3 [
+
+
+
+
+
]
= 3 [ 1 +
+
+
+
+
]
= 3(
)
= 3 × 20.781
= 62.34 ( to the nearest hundredth )
Answer:
Given the mean = 205 cm and standard deviation as 7.8cm
a. To calculate the probability that an individual distance is greater than 218.4 cm, we subtract the probability of the distance given (i.e 218.4 cm) from the mean (i.e 205 cm) divided by the standard deviation (i.e 7.8cm) from 1. Therefore, we have 1- P(Z
). Using the Z distribution table we have 1-0.9573. Therefore P(X >218.4)= 0.0427.
b. To calculate the probability that mean of 15 (i.e n=15) randomly selected distances is greater than 202.8, we subtract the probability of the distance given (i.e 202.8cm) from the mean (i.e 205 cm) divided by the standard deviation (i.e 7.8cm) divided by the square root of mean (i.e n= 15) from 1. Therefore, we have 1- P(Z
). Using the Z distribution table we have 1-0.1378. Therefore P(X >202.8)= 0.8622.
c. This will also apply to a normally distributed data even if it is not up to the sample size of 30 since the sample distribution is not a skewed one.
Step-by-step explanation:
Given the mean = 205 cm and standard deviation as 7.8cm
a. To calculate the probability that an individual distance is greater than 218.4 cm, we subtract the probability of the distance given (i.e 218.4 cm) from the mean (i.e 205 cm) divided by the standard deviation (i.e 7.8cm) from 1. Therefore, we have 1- P(Z
). Using the Z distribution table we have 1-0.9573. Therefore P(X >218.4)= 0.0427.
b. To calculate the probability that mean of 15 (i.e n=15) randomly selected distances is greater than 202.8, we subtract the probability of the distance given (i.e 202.8cm) from the mean (i.e 205 cm) divided by the standard deviation (i.e 7.8cm) divided by the square root of mean (i.e n= 15) from 1. Therefore, we have 1- P(Z
). Using the Z distribution table we have 1-0.1378. Therefore P(X >202.8)= 0.8622.
c. This will also apply to a normally distributed data even if it is not up to the sample size of 30 since the sample distribution is not a skewed one.
1. Move terms to the left side
2.Subtract the numbers
3.Use the quadratic formula
4.Simplify
5.Separate the equations
6.Solve
Rearrange and isolate the variable to find each solution.
Solution,
Solution
x=5±√39
Answer:
A is correct.
Step-by-step explanation:
Plug the 12 books he bought into the equation. Then, multiply 2.25 and 12, and that's your answer. Hope this helps. Please mark Brainliest! :)
Since each edge's length is x, each face's are would be

And cubes have 6 faces. multiply 6 by

, the formula is :