Answer:
12 moles of CO₂.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
CO₂ + H₂O —> H₂CO₃
From the balanced equation above,
1 mole of CO₂ dissolves in water to produce 1 mole of H₂CO₃.
Finally, we shall determine the number of moles of CO₂ that will dissolve in water to produce 12 moles of H₂CO₃. This can be obtained as follow:
From the balanced equation above,
1 mole of CO₂ dissolves in water to produce 1 mole of H₂CO₃.
Therefore, 12 moles of CO₂ will also dissolve in water to produce 12 moles of H₂CO₃.
Thus, 12 moles of CO₂ is required.
<span>identify the order in which rock units formed</span>
Some are weaker than others it’s natural causes or they fight then d1e
Answer:
- 13.56 g of sodium chloride are theoretically yielded.
- Limiting reactant is copper (II) chloride and excess reactant is sodium nitrate.
- 0.50 g of sodium nitrate remain when the reaction stops.
- 92.9 % is the percent yield.
Explanation:
Hello!
In this case, according to the question, it is possible to set up the following chemical reaction:

Thus, we can first identify the limiting reactant by computing the yielded mass of sodium chloride, NaCl, by each reactant via stoichiometry:

Thus, we infer that copper (II) chloride is the limiting reactant as it yields the fewest grams of sodium chloride product. Moreover the formed grams of this product are 13.56 g. Then, we take 13.56 g of sodium chloride to compute the consumed mass sodium nitrate as it is in excess:

Therefore, the leftover of sodium nitrate is:

Finally, the percent yield is computed via:

Best regards!