B,Si,Ge,As,Sb,Te, and At are all the metalloids on the periodic table of elements.
Answer:
Ice Cubes. When water freezes into ice cubes, the energy is released in the form of heat. ...
Formation Of Snow In Clouds. Sponsored. ...
Hot Packs. ...
Rusting Of Iron. ...
Burning Of Candles. ...
Lightning Of Match. ...
Setting Cement And Concrete.
Explanation:
Hello!
We have the following data:
ps: we apply Ka in benzoic acid to the solution.
[acid] = 0.235 M (mol/L)
[salt] = 0.130 M (mol/L)
pKa (acetic acid buffer) =?
pH of a buffer =?
Let us first find pKa of benzoic acid, knowing that Ka (benzoic acid) = 
So:





Now, using the abovementioned data for the pH formula of a buffer solution or (Henderson-Hasselbalch equation), we have:
![pH = pKa + log\:\dfrac{[salt]}{[acid]}](https://tex.z-dn.net/?f=%20%20pH%20%3D%20pKa%20%2B%20log%5C%3A%5Cdfrac%7B%5Bsalt%5D%7D%7B%5Bacid%5D%7D%20%20%20)





Note:. The pH <7, then we have an acidic solution.
I Hope this helps, greetings ... DexteR! =)
Active metals are those metals in the group 1 of the periodic table.
Electronegativity is the trend to atract electrons.
Active metals have few valence electron, because their last shell is of the kind ns^1 or ns^2
Then, these atoms do not trend to attract electrons. The most electronegative atomos are those who have 7 valence elecfrons; this is their last shell is of the kind ns^7, because when they attract one electron to its valence shell they will complete 8 electrons which is the most stable configuration.
Answer:
Δ[NH₃]/Δt = 2/3 ( Δ[H₂]/Δt )
Explanation:
For determining rates as a function of reaction coefficients one should realize that these type problems are <u>always in pairs</u> of reaction components. For the reaction N₂ + 3H₂ => 2NH₃ one can compare ...
Δ[N₂]/Δt ∝ Δ[H₂]/Δt, or
Δ[N₂]/Δt ∝ Δ[NH₃]/Δt, or
Δ[H₂]/Δt ∝ Δ[NH₃]/Δt, but never 3 at a time.
So, set up the relationship of interest ( ammonia rate vs. hydrogen rate)... nitrogen rate is ignored.
Δ[H₂]/Δt ∝ Δ[NH₃]/Δt
Now, 'swap' coefficients of balanced equation and apply to terms given then set term multiples equal ...
N₂ + 3H₂ => 2NH₃ => 2(Δ[H₂]/Δt) = 3(Δ[NH₃]/Δt) => 2/3(Δ[H₂]/Δt) = (Δ[NH₃]/Δt)
NOTE => Comparing rates individually of the component rates in reaction process, the rate of H₂(g) consumption is 3/2 times <u>faster</u> than NH₃(g) production (larger coefficient). So, in order to compose an equivalent mathematical relationship between the two, one must reduce the rate of the H₂(g) by 2/3 in order to equal the rate of NH₃(g) production. Now, given the rate of one of the components as a given, substitute and solve for the unknown.
CAUTION => When Interpreting rate of reaction one should note that the rate expression for an individual reaction component defines 'instantaneous' rate or speed. <u>This means velocity (or, speed) does not have 'signage'</u>. Yes, one may say the rate is higher or lower as time changes but that change is an acceleration or deceleration for one instantaneous velocity to another. Acceleration and Deceleration do have signage but the positional instantaneous velocity (defined by a point in time) does not. Thus is reason for the 'e-choice' answer selection without the signage associated with the expression terms.