The number of electrons in an atom's outermost valence shell governs its bonding behaviour. Elements whose atoms have the same number of valence electrons are grouped together in the Periodic Table. ... Nonmetals tend to attract additional valence electrons to form either ionic or covalent bonds.
The third launch ( with 300 N force) had the greatest acceleration of the tennis ball
<h3>Further explanation </h3>
Newton's 2nd law explains that the acceleration produced by the resultant force on an object is proportional and in line with the resultant force and inversely proportional to the mass of the object
∑F = m. a
F = force, N
m = mass = kg
a = acceleration due to gravity, m / s²
From the above equation it has been shown that the force acting on the object is directly proportional to its acceleration, so <em>the greater the force exerted on the object, the greater the acceleration of the object produced.</em>
Answer:
everyone would die
Explanation:
if we did not know about it we would not do anything about it
The answer is (2) equal to. In redox reactions, you can't just lose electrons somewhere. If an electrons is lost by one, it must be gained by another. Hence, the importance of balancing redox reactions.
<em>A: When burning Sulfur, Sulfur Dioxide is released. Having more Oxygen available provides more reactive potential for the burning Sulfur, making it burn much more fiercely. In water, the Sulfur Dioxide forms Sulfurous acid. Added: 12 years ago.</em>
<em />
<em>Explanation:</em>
<h3><em /></h3>