Answer:
Reversible reactions exhibit the same reaction rate for forward and reverse reactions at equilibrium.
Reversible reactions exhibit constant concentrations of reactants and products at equilibrium
Explanation:
A reversible reaction is a reaction that can proceed in both forward and backward direction.
Equilibrium is attained in a chemical system when there is no observable change in the properties of the system.
At equilibrium, a reversible reaction is occurring in at same rate. That is, the forward and backward reaction is occurring at the same rate. As the rate of the forward and backward reaction remains the same, the concentrations of the reactants and products will also be the same in order for the equilibrium to be maintained.
Recall that density is Mass/Volume. We are given the mL of liquid which is volume so all we need is mass now. We are given the mass of the granulated cylinder both with and without the liquid, so if we subtract them, we can get the mass of the liquid by itself. So, 136.08-105.56= 30.52g. This is the mass of the liquid. We now have all we need to find the density. So, let’s plug these into the density formula. 30.52g/45.4mL= 0.672 g/mL. This is our final answer since the problem requests the answer in g/mL, but be careful, because some problems in the future may ask for g/L requiring unit conversions. Also note that 30.52 was 4 sigfigs and 45.4 was 3 sigfigs, and so dividing them required an answer that was 3 sigfigs as well, hence why the answer is in the thousandths place
Your answer would be 172.1703 g/ml
HCl is the limiting reactant, and 3.5 mol H2<span> can be formed</span>