Hi,
I think the answer is metric.
THE ANSWER IS: <u>737.5</u>
I JUST TOOK THE QUIZ!!!!
Answer:
47.36mL
Explanation:
Using Boyles law equation, which states that:
P1V1 = P2V2
Where;
V1 = initial volume (mL)
V2 = final volume (mL)
P1 = initial pressure (atm)
P2 = final pressure (atm)
Based on the provided information, V1 = 25.3mL, P1 = 152 kPa, V2 = ?, P2 = 0.804atm
First, we need to convert 152kPa to atm by dividing by 101
1kPa = 0.0099atm
152kPa = 1.505atm
P1V1 = P2V2
1.505 × 25.3 = 0.804 × V2
38.08 = 0.804V2
V2 = 38.08/0.804
V2 = 47.36mL
The atomic mass of the isotope Ni ( 62 over 28 ) = 61.928345 amu.
Mass of the electrons: 28 · 5.4584 · 10^(-4 ) amu = 0.0152838 amu ( g/mol )
Mass of the nuclei:
61.928345 amu - 0.0152838 amu = 61.913062 amu (g/mol)
The mass difference between a nucleus and its constituent nucleons is called the mass defect.
For Ni ( 62 over 28 ): Mass of the protons: 28 · 1.00728 amu = 28.20384 amu
Mass of the neutrons: 34 · 1.00866 amu = 34.299444 amu
In total : 62.49828 amu
The mass defect = 62.49828 - 61.913062 = 0.585218 amu
Nucleus binding energy:
E = Δm · c² ( the Einstein relationship )
E = 0.585218 · ( 2.9979 · 10^8 m/s )² · 1 / (6.022 · 10^23) · 1 kg / 1000 g =
= 0.585218 · 8.9874044 · 10 ^16 : (6.022 · 10^23) · 0.001 =
= ( 5.2595908 : 6.022 ) · 0.001 · 10^(-7 ) =
= 0.0008733 · 10^(-7) J = 8.733 · 10^(-11) J
The nucleus binding energy per nucleon:
8.733 · 10^(-11) J : 62 = 0.14085 · 10 ^(-11) =
= 1.4085 · 10^(-12) J per nucleon.
The answer is C
Sbbsshhshsgssh