Seeing signs of a chemical reaction does not always mean that a reaction is happening. For example, a gas (water vapor) is given off when water boils. ... You can tell that it is a physical change because water vapor can condense to form liquid water. In a chemical change, a new substance must be produced.
700 L of water was produced if 350.0 L of carbon dioxide were made at STP.
The quantitative relationship (ratio) between reactants and products in a chemical reaction that produces gases is known as gas stoichiometry. When the created gases are presumed to be ideal and their temperature, pressure, and volume are all known, gas stoichiometry is applicable.
The ideal gas equation is PV=nRT, where n is the number of moles and R is the gas constant, P is the pressure measured in atmospheres (atm), V is the volume measured in liters (L), and
Calculations based on stoichiometry assist scientists and engineers who work in the business world in estimating the number of items they will make using a particular process. They can also assist in determining if a product will be economical to produce.
Reduced growth, reproduction, and survivability for the consumer are typically the results of a significant stoichiometric imbalance between the primary producer and consumer.
To know more about stoichiometry refer to: brainly.com/question/9743981
#SPJ1
Answer:
The three laws of Chemical Reaction are .The law of constant proportions. The law of multiple proportions. The law of reciprocal proportions.
A chemical compound is always found to be made up of the same elements combined together in the same fixed proportion by mass.
potassium and chlorine gas ---> chloride.
Hope this helps, have a good day.✌
Answer:
0.78 atm
Explanation:
Step 1:
Data obtained from the question. This includes:
Mass of CO2 = 5.6g
Volume (V) = 4L
Temperature (T) =300K
Pressure (P) =?
Step 2:
Determination of the number of mole of CO2.
This is illustrated below:
Mass of CO2 = 5.6g
Molar Mass of CO2 = 12 + (2x16) = 12 + 32 = 44g/mol
Number of mole CO2 =?
Number of mole = Mass/Molar Mass
Number of mole of CO2 = 5.6/44
Number of mole of CO2 = 0.127 mole
Step 3:
Determination of the pressure in the container.
The pressure in the container can be obtained by applying the ideal gas equation as follow:
PV = nRT
The gas constant (R) = 0.082atm.L/Kmol
The number of mole (n) = 0.127 mole
P x 4 = 0.127 x 0.082 x 300
Divide both side by 4
P = (0.127 x 0.082 x 300) /4
P = 0.78 atm
Therefore, the pressure in the container is