The answer would be 0.25 g/mL.
I determined the density by dividing the mass by the volume which gives you the density. D = mass/volume.
<span>6 g / 24 mL = 0.25 g/mL
</span>
The molar mass of the unknown gas is 184.96 g/mol
<h3>Graham's law of diffusion </h3>
This states that the rate of diffusion of a gas is inversely proportional to the square root of the molar mass i.e
R ∝ 1/ √M
R₁/R₂ = √(M₂/M₁)
<h3>How to determine the molar mass of the unknown gas </h3>
The following data were obtained from the question:
- Rate of unknown gas (R₁) = R
- Rate of CH₄ (R₂) = 3.4R
- Molar mass of CH₄ (M₂) = 16 g/mol
- Molar mass of unknown gas (M₁) =?
The molar mass of the unknown gas can be obtained as follow:
R₁/R₂ = √(M₂/M₁)
R / 3.4R = √(16 / M₁)
1 / 3.4 = √(16 / M₁)
Square both side
(1 / 3.4)² = 16 / M₁
Cross multiply
(1 / 3.4)² × M₁ = 16
Divide both side by (1 / 3.4)²
M₁ = 16 / (1 / 3.4)²
M₁ = 184.96 g/mol
Learn more about Graham's law of diffusion:
brainly.com/question/14004529
#SPJ1
An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit The word was coined by William Wheel at the request of the scientist Michael Faraday from the Greek words electron, meaning amber and hods, a way.
They are colourless solids (salts) that do not conduct electricity when solid, but conduct electricity in aqueous solution as the ions (that carry charge) are free to move.
They have a high melting point due to the strong electrostatic forces of attraction between oppositely charged ions
Best regards