first of all there is only two types of selective breeding and they are hybridization and inbreeding.
The question is incomplete. Complete question is attached below
..............................................................................................................................
Correct Answer:
Option C i.e. I ~ III < IV < V < II
Reason:
During a nucleophilic subsitution reaction of chloroarenes, Cl- group is replaced by an nucleophile like OH-.
Order of reactivity, during such reactions depends on the electron density on carbon atom that is attached to Cl. Lower the electron density, greater will be the reactivity.Among the provided chloroarenes, electron density on C atom will be minimum in case of compound II, because of presence of electron withdrawing group (-NO2) at ortho and para position. Due to this, there will be large number of resonating structures. This signifies greater electron de-localization, and hence largest reactivity for nucleophilic substitution reaction.
Followed by this, compound V will show greater reactivity, due to presence of -NO2 group at para and one of the ortho position. Compound IV will have less number of resonating structures as compared to compound II and V, hence it will display poor reactivity towards nucleophilic substitution reaction.
Finally, compound 1 and III will minimum reactivity towards nucleophilic substitution reaction, because -NO2 group present at meta position (compound III) will not participate in resonance.
Answer:
moon
Explanation:
the moon's gravitational pull generates tidal force which affects earth's tides
Protons=33 / electrons:42
The mass of iron block is 500 g. The amount of energy required to melt the iron block needs to be calculated. Melting means conversion of solid to liquid thus, heat of fusion is used which is 247 J/g.
From heat of fusion, 247 J of energy is released by melting 1 g of iron block. Thus, the amount of heat released by melting 500 g of iron rod will be:
H= 247 J/g× 500 g=1.23×10^{5}
Hence, option B is correct.