Answer:
false, Potassium and fluorine are not halogens.
only fluorine here is halogen.
potassium is an alkali earth metal it doesn't comes under category of halogens, but fluorine
is a non metal which comes under halogen family.
Answer:
[EtOH] = 2.2M and Wt% EtOH = 10.1% (w/w)
Explanation:
1. Molarity = moles solute / Volume solution in Liters
=> moles solute = mass solute / formula weight of solute = 9.8g/46g·mol⁻¹ = 0.213mol EtOH
=> volume of solution (assuming density of final solution is 1.0g/ml) ...
volume solution = 9.81gEtOH + 87.5gH₂O = 97.31g solution x 1g/ml = 97.31ml = 0.09731 Liter solution
Concentration (Molarity) = moles/Liters = 0.213mol/0.09731L = 2.2M in EtOH
2. Weight Percent EtOH in solution (assuming density of final solution is 1.0g/ml)
From part 1 => [EtOH] = 2.2M in EtOH = 2.2moles EtOH/1.0L soln
= {(2.2mol)(46g/mol)]/1000g soln] x 100% = 10.1% (w/w) in EtOH.
Answer:
Explanation:
There is a formula for this:
M = DRT/P where M = molar mass. This just derived from PV = nRT where you say n = grams/molar mass. However, just with this formula, we can get D which is density at STP (1 atm and 273K). We find that D = 6.52g/L.
Explanation:
According to Bohr's postulates, the electron in the present in the lower energy level can absorb energy and exits to higher energy level. Also, when this electron returns back to its orbit, it emits some energy.
Since the hydrogen consists of 1 electron and 1 proton. The lowest energy configuration of the hydrogen is when n =1 or, when the electron is present in the K-shell or the ground state.
The possible transition for the electron given in the question is :
n = 2, 3 and 4
The schematic diagram of the hydrogen atom consisting of these four quantum levels in which the electron can jump (Absorption) and comeback to from these energy levels (emission) .
Answer:
i think is c,my ans will not be 100%correct