Answer:
It would increase the final quantity of products
Explanation:
According to the Le- Chatelier principle,
At equilibrium state when stress is applied to the system, the system will behave in such a way to nullify the stress.
The equilibrium can be disturb,
By changing the concentration
By changing the volume
By changing the pressure
By changing the temperature
Consider the following chemical reaction.
Chemical reaction:
2NO₂ ⇄ N₂O₄
In this reaction the equilibrium is disturb by increasing the concentration of reactant.
When the concentration of reactant is increased the system will proceed in forward direction in order to regain the equilibrium. Because when reactant concentration is high it means reaction is not on equilibrium state. As the concentration of NO₂ increased the reaction proceed in forward direction to regain the equilibrium state and more product is formed.
Markovnikov rule, in organic chemistry, a generalization, formulated by Vladimir Vasilyevich Markovnikov in 1869, stating that in addition reactions to unsymmetrical alkenes, the electron-rich component of the reagent adds to the carbon atom with fewer hydrogen atoms bonded to it, while the electron-deficient component ...
Endo is more in reactants and exo is more in products because in exothermic reactions heat is released
Answer:
The law of multiple proportions is the third postulate of Dalton's atomic theory. It states that the masses of one element which combine with a fixed mass of the second element are in a ratio of whole numbers.
Therefore, the masses of oxygen in the two compounds that combine with a fixed mass of carbon should be in a whole number ratio. In 100 grams of the first compound (100 is chosen to make calculations easier), there are 57.1 grams oxygen and 42.9 grams carbon. The mass of oxygen (O) per gram of carbon (C) is:
57.1 g O / 42.9 g C = 1.33 g O per g C
In the 100 grams of the second compound, there are 72.7 grams of oxygen (O) and 27.3 grams of carbon (C). The mass of oxygen per gram of carbon is:
72.7 g O / 27.3 g C = 2.66 g O per g C
Dividing the mass O per g C of the second (larger value) compound:
2.66 / 1.33 = 2
This means that the masses of oxygen that combine with carbon are in a 2:1 ratio. The whole-number ratio is consistent with the law of multiple proportions.
Explanation: