Proton plus neutron is the correct answer. Protons and neutrons have a mass of 1 and electrons have a mass of 0. So in order to find the mass of an atom you need to add the number of protons and the number of neutrons.
An atom hopefully this helps
Answer:

Explanation:
Volume of a cone:
We have
and we want to find
when the height is 2 cm.
We can see in our equation for the volume of a cone that we have three variables: V, r, and h.
Since we only have dV/dt and dh/dt, we can rewrite the equation in terms of h only.
We are given that the height of the cone is 1/5 the radius at any given time, 1/5r, so we can write this as r = 5h.
Plug this value for r into the volume formula:
Differentiate this equation with respect to time t.
Plug known values into the equation and solve for dh/dt.
Divide both sides by 100π to solve for dh/dt.
The height of the cone is increasing at a rate of 1/10π cm per second.
37.8 grams of CS2 equals to 37.8/76=0.5 mole. So the products have 0.5 mole CO2 which is 11.2 liters at STP. So according to the gas law, the volume at given condition is 12.4 liters. So the answer should be 12.2 liters.
The four ionic species initially in solution are Na⁺, PO₄³⁻, Cr³⁺, and Cl⁻. Since the precipitate is composed of Cr³⁺ and PO₄³⁻ ions, the spectator ions must be Na⁺ and Cl⁻.
The complete ionic equation is 3Na⁺(aq) + PO₄³⁻(aq) + Cr₃⁺(aq) + 3Cl⁻(aq) → 3Na⁺(aq) + 3Cl⁻(aq) + CrPO₄(s).
So the balanced <u>net ionic equation</u> for this reaction would be Cr³⁺(aq) + PO₄³⁻(aq) → CrPO₄(s).