Answer:
answer is 12.18
Explanation:
(C2H5NH2, Kb = 5.6 x 10-4.)
The answer is 62.026 g/mole
False
Explanation:
Electron affinity is negative when energy is absorbed and it is positive when energy is released.
Electron affinity is defined as the energy released in adding an electron to a neutral atom in the gas phase.
It is a measure of the readiness of an atom to gain an electron.
In a reaction where energy is released, electron affinity is usually positive. These reactions are called exothermic reactions.
Endothermic reactions in which energy is absorbed have negative electron affinity values.
Learn more:
Endothermic reactions brainly.com/question/12964401
#learnwithBrainly
i think it is 6 valence electrons
Answer: The energy (heat) required to convert 52.0 g of ice at –10.0°C to steam at 100°C is 157.8 kJ
Explanation:
Using this formular, q = [mCpΔT] and = [nΔHfusion]
The energy that is needed in the different physical changes is thus:
The heat needed to raise the ice temperature from -10.0°C to 0°C is given as as:
q = [mCpΔT]
q = 52.0 x 2.09 x 10
q = 1.09 kJ
While from 0°C to 100°C is calculated as:
q = [mCpΔT]
q = 52.0 x 4.18 x 100
q = 21.74 kJ
And for fusion at 0°C is called Heat of fusion and would be given as:
q = n ΔHfusion
q = 52.0 / 18.02 x 6.02
q = 17.38 kJ
And that required for vaporization at 100°C is called Heat of vaporization and it's given as:
q = n ΔHvaporization
q = 52.0 / 18.02 x 40.7
q = 117.45 kJ
Add up all the energy gives 157.8 kJ