Option are as follow,
A. temperature, concentration and surface area
<span>B. temperature, and concentration only </span>
<span>C. concentration and surface area only </span>
<span>D. temperature and surface area only
</span>
Answer:
Option-<span>A. Temperature, Concentration and Surface area
</span>
Explanation:
1) Increasing Temperature:
Increase in temperature increases the Kinetic energy of molecules. This results in increase in the velocity and rate of collisions between reactants. Hence, greater the number of collisions between reactants per time greater will be the probability of formation of product per unit time.
2) Increasing Concentration
Increase in concentration results in increase in number of particles of reactants per unit area, hence collision rate increases resulting in rate of reaction.
3) Increasing Surface Area
Grinding of Zn results in the increase of surface area of Zinc. So greater the surface area greater is the exposure of Zinc metal to HCl molecules, hence the rate of formation of product increases.
Answer:
Remove exess water
Explanation:
The reaction involved is an esterification reaction. Esterification is a reaction in which alcohol and carboxylic acid reacts to yield an ester and water. It is analogous to the inorganic neutralization reaction.
According to Le Chatelier's principle , one method of driving the equilibrium towards the forward reaction is by removal of one of the products. In this case, if water is removed, the forward reaction is favoured.
When calcium joins with calcium its follows the following equation:
2Ca + O2 = 2CaO
hope that helps
Answer:
ρ = 1.08 g/cm³
Explanation:
Step 1: Given data
Mass of the substance (m): 21.112 g
Volume of the substance (V): 19.5 cm³
Step 2: Calculate the density of the substance
The density (ρ) of a substance is equal to its mass divided by its volume.
ρ = m / V
ρ = 21.112 g / 19.5 cm³
ρ = 1.08 g/cm³
The density of the substance is 1.08 g/cm³.
The moles which were measured out is calculated using the following formula
moles = mass/molar mass
molar mass of CuBr2.4H20 = 63.5 Cu + ( 2 x79.9) br + ( 18 x4_) h20 = 295.3 g/mol
moles is therefore= 5.2 g/ 295.3 g/mol= 0.0176 moles