1 mole is equal to 1 moles NaOH, or 39.99711 grams.
Hope this helped
Lithium has the lowest. if fluorine is the highest then lithium is the lowest. i hope this helps you out!
44. (a) N2O3 (b) SF4 (c) AlCl3 (d) Li2CO3
46. H Br
δ+ δ−
48. The metallic potassium atoms lose one electron and form +1 cations,
and the nonmetallic fluorine atoms gain one electron and form –1 anions.
K → K+
+ e–
19p/19e–
19p/18e–
F + e–
→ F–
9p/9e–
9p/10e–
The ionic bonds are the attractions between K+
cations and F–
anions.
50. See Figure 3.6.
52. (a) covalent…nonmetal-nonmetal (b) ionic…metal-nonmetal
54. (a) all nonmetallic atoms - molecular (b) metal-nonmetal - ionic
56. (a) 7 (b) 4
58. Each of the following answers is based on the assumption that nonmetallic
atoms tend to form covalent bonds in order to get an octet (8) of
electrons around each atom, like the very stable noble gases (other than
helium). Covalent bonds (represented by lines in Lewis structures) and lone
pairs each contribute two electrons to the octet.
(a) oxygen, O
If oxygen atoms form two covalent bonds, they will have an octet of electrons
around them. Water is an example:
H O H
(b) fluorine, F
If fluorine atoms form one covalent bond, they will have an octet of electrons
around them. Hydrogen fluoride, HF, is an example:
H F
(c) carbon, C
If carbon atoms form four covalent bonds, they will have an octet of electrons
around them. Methane, CH4, is an example:
H H
H
H
C
(d) phosphorus, P
If phosphorus atoms form three covalent bonds, they will have an octet
Answer:
The correct answer is 4.58 grams.
Explanation:
Based on the Faraday's law of electrolysis, at the time of electrolysis, the amount of deposited substance is directly equivalent to the concentration of the flow of charge all through the solution. If current, I, is passed for time, t, seconds and w is the concentration of the substance deposited, then w is directly proportional to I*t or w = zIt (Here z refers to the electrochemical equivalent or the amount deposited when 1 C is passed).
For the reaction, n * 96500 C = molar mass
1C = molar mass/n*96500 = Equivalent wt / 96500
w = Equivalent wt / 96500 * I * t
In the given reaction,
Pb + PbO2 + 2HSO4- + 2H+ → 2PbSO4 + 2H2O, n = 2, the current or I drawn is 350 A, for time, t 12.2 seconds.
Now putting the values in the equation we get,
w = 207.19 / 2 * 96500 * 350 * 12.2 ( The molecular weight of Pb is 207.19 and the equivalent weight of Pb is 207.19 / 2)
w = 4.58 gm.